Heavy quark potential in a static and strong homogeneous magnetic field

被引:0
|
作者
Mujeeb Hasan
Bhaswar Chatterjee
Binoy Krishna Patra
机构
[1] Indian Institute of Technology Roorkee,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We have investigated the properties of quarkonia in a thermal QCD medium in the background of strong magnetic field. For that purpose, we employ the Schwinger proper-time quark propagator in the lowest Landau level to calculate the one-loop gluon self-energy, which in the sequel gives the effective gluon propagator. As an artifact of strong magnetic field approximation (eB>>T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$eB>>T^2$$\end{document} and eB>>m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$eB>>m^2$$\end{document}), the Debye mass for massless flavors is found to depend only on the magnetic field which is the dominant scale in comparison to the scales prevalent in the thermal medium. However, for physical quark masses, it depends on both magnetic field and temperature in a low temperature and high magnetic field but the temperature dependence is very meager and becomes independent of the temperature beyond a certain temperature and magnetic field. With the above mentioned ingredients, the potential between heavy quark (Q) and anti-quark (Q¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{Q}$$\end{document}) is obtained in a hot QCD medium in the presence of a strong magnetic field by correcting both short- and long-range components of the potential in the real-time formalism. It is found that the long-range part of the quarkonium potential is affected much more by magnetic field as compared to the short-range part. This observation facilitates us to estimate the magnetic field beyond which the potential will be too weak to bind QQ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q\bar{Q}$$\end{document} together. For example, the J/ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J/\psi $$\end{document} is dissociated at eB∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$eB \sim $$\end{document} 10 mπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_\pi ^2$$\end{document} and Υ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Upsilon $$\end{document} is dissociated at eB∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$eB \sim $$\end{document} 100 mπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_\pi ^2$$\end{document} whereas its excited states, ψ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi ^\prime $$\end{document} and Υ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Upsilon ^\prime $$\end{document} are dissociated at smaller magnetic field eB=mπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$eB= m_\pi ^2$$\end{document}, 13mπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$13 m_\pi ^2$$\end{document}, respectively.
引用
收藏
相关论文
共 50 条
  • [1] Heavy quark potential in a static and strong homogeneous magnetic field
    Hasan, Mujeeb
    Chatterjee, Bhaswar
    Patra, Binoy Krishna
    EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (11):
  • [2] Heavy quark potential and LQCD based quark condensate at finite magnetic field
    Nilima, Indrani
    Bandyopadhyay, Aritra
    Ghosh, Ritesh
    Ghosh, Sabyasachi
    EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (01):
  • [3] Heavy quark potential and LQCD based quark condensate at finite magnetic field
    Indrani Nilima
    Aritra Bandyopadhyay
    Ritesh Ghosh
    Sabyasachi Ghosh
    The European Physical Journal C, 83
  • [4] Magnetic field effects on the static quark potential at zero and finite temperature
    Bonati, Claudio
    D'Elia, Massimo
    Mariti, Marco
    Mesiti, Michele
    Negro, Francesco
    Rucci, Andrea
    Sanfilippo, Francesco
    PHYSICAL REVIEW D, 2016, 94 (09)
  • [5] Heavy quark potential in the static limit of QCD
    Kiselev, VV
    Kovalsky, AE
    Onishchenko, AI
    PHYSICAL REVIEW D, 2001, 64 (05):
  • [6] One-loop QCD thermodynamics in a strong homogeneous and static magnetic field
    Rath, Shubhalaxmi
    Patra, Binoy Krishna
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (12):
  • [7] One-loop QCD thermodynamics in a strong homogeneous and static magnetic field
    Shubhalaxmi Rath
    Binoy Krishna Patra
    Journal of High Energy Physics, 2017
  • [8] On quark matter in a strong magnetic field
    Anand, JD
    Singh, S
    PRAMANA-JOURNAL OF PHYSICS, 1999, 52 (02): : 127 - 132
  • [9] Quark matter in a strong magnetic field
    Chakrabarty, S
    PHYSICAL REVIEW D, 1996, 54 (02): : 1306 - 1316
  • [10] On quark matter in a strong magnetic field
    J D Anand
    S. Singh
    Pramana, 1999, 52 : 127 - 132