Harmonic embeddings of the Stretched Sierpinski Gasket

被引:0
|
作者
Ugo Bessi
机构
[1] Università Roma Tre,Dipartimento di Matematica
来源
Nonlinear Differential Equations and Applications NoDEA | 2023年 / 30卷
关键词
31C25; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
P. Alonso-Ruiz, U. Freiberg and J. Kigami have defined a large family of resistance forms on the Stretched Sierpinski Gasket G. In the present paper we introduce a system of coordinates on G (technically, an embedding of G into R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{R}^2$$\end{document}) such thatthese forms are defined on C1(R2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1(\textbf{R}^2,\textbf{R})$$\end{document} andall affine functions are harmonic for them. We do this adapting a standard method from the Harmonic Sierpinski Gasket: we start finding a sequence Gl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_l$$\end{document} of pre-fractals such that all affine functions are harmonic on Gl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_l$$\end{document}. After showing that this property is inherited by the stretched harmonic gasket G, we use the formula for the Laplacian of a composition to prove that, for a natural measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} on G, C2(R2,R)⊂D(Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2(\textbf{R}^2,\textbf{R})\subset {{\mathcal {D}}}(\Delta )$$\end{document} and Teplyaev’s formula for the Laplacian of C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document} functions holds. Lastly, we use the expression for Δu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta u$$\end{document} to show that the form we have found is closable in L2(G,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(G,\mu )$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Eikonal equations on the Sierpinski gasket
    Camilli, Fabio
    Capitanelli, Raffaela
    Marchi, Claudio
    MATHEMATISCHE ANNALEN, 2016, 364 (3-4) : 1167 - 1188
  • [42] Spanning trees on the Sierpinski gasket
    Chang, Shu-Chiuan
    Chen, Lung-Chi
    Yang, Wei-Shih
    JOURNAL OF STATISTICAL PHYSICS, 2007, 126 (03) : 649 - 667
  • [43] Broadcasting in Sierpinski gasket graphs
    Shanthakumari, A.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2015, 92 : 111 - 119
  • [44] MAGNETOINDUCTANCE OF A SUPERCONDUCTING SIERPINSKI GASKET
    KORSHUNOV, SE
    MEYER, R
    MARTINOLI, P
    PHYSICAL REVIEW B, 1995, 51 (09): : 5914 - 5926
  • [45] Orthogonal Polynomials on the Sierpinski Gasket
    Kasso A. Okoudjou
    Robert S. Strichartz
    Elizabeth K. Tuley
    Constructive Approximation, 2013, 37 : 311 - 340
  • [46] Magnetoinductance of a superconducting Sierpinski gasket
    Korshunov, S. E.
    Meyer, R.
    Martinoli, P.
    Physical Review B: Condensed Matter, 51 (09):
  • [47] Orthogonal Polynomials on the Sierpinski Gasket
    Okoudjou, Kasso A.
    Strichartz, Robert S.
    Tuley, Elizabeth K.
    CONSTRUCTIVE APPROXIMATION, 2013, 37 (03) : 311 - 340
  • [48] Spanning forests on the Sierpinski gasket
    Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan
    不详
    Discrete Mathematics and Theoretical Computer Science, 2008, 10 (02): : 55 - 76
  • [49] Fractal functions on the Sierpinski Gasket
    Ri, SongIl
    CHAOS SOLITONS & FRACTALS, 2020, 138
  • [50] Hausdorff measure of Sierpinski gasket
    Zhou, ZL
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (10): : 1016 - 1021