Harmonic embeddings of the Stretched Sierpinski Gasket

被引:0
|
作者
Ugo Bessi
机构
[1] Università Roma Tre,Dipartimento di Matematica
来源
Nonlinear Differential Equations and Applications NoDEA | 2023年 / 30卷
关键词
31C25; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
P. Alonso-Ruiz, U. Freiberg and J. Kigami have defined a large family of resistance forms on the Stretched Sierpinski Gasket G. In the present paper we introduce a system of coordinates on G (technically, an embedding of G into R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{R}^2$$\end{document}) such thatthese forms are defined on C1(R2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1(\textbf{R}^2,\textbf{R})$$\end{document} andall affine functions are harmonic for them. We do this adapting a standard method from the Harmonic Sierpinski Gasket: we start finding a sequence Gl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_l$$\end{document} of pre-fractals such that all affine functions are harmonic on Gl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_l$$\end{document}. After showing that this property is inherited by the stretched harmonic gasket G, we use the formula for the Laplacian of a composition to prove that, for a natural measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} on G, C2(R2,R)⊂D(Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2(\textbf{R}^2,\textbf{R})\subset {{\mathcal {D}}}(\Delta )$$\end{document} and Teplyaev’s formula for the Laplacian of C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document} functions holds. Lastly, we use the expression for Δu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta u$$\end{document} to show that the form we have found is closable in L2(G,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(G,\mu )$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Quantum walks on Sierpinski gasket and Sierpinski tetrahedron
    Hui-Hui Xie
    Guo-Mo Zeng
    Quantum Information Processing, 2021, 20
  • [32] Dirac operators and geodesic metric on the harmonic Sierpinski gasket and other fractal sets
    Lapidus, Michel L.
    Sarhad, Jonathan J.
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2014, 8 (04) : 947 - 985
  • [33] Harmonic Extension on Level-3 Sierpinski Gasket via Electrical Network
    Kumar, R. Uthaya
    Devi, A. Nalayini
    2013 INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND EMBEDDED SYSTEMS (ICICES), 2013, : 998 - 1004
  • [34] MEAN VALUE PROPERTY OF HARMONIC FUNCTION ON THE HIGHER-DIMENSIONAL SIERPINSKI GASKET
    Wu, Yipeng
    Chen, Zhilong
    Zhang, Xia
    Zhao, Xudong
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (05)
  • [35] Sierpinski's ubiquitous gasket
    Stewart, I
    SCIENTIFIC AMERICAN, 1999, 281 (02) : 90 - 91
  • [36] BOUNDED VARIATION ON THE SIERPINSKI GASKET
    Verma, S.
    Sahu, A.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)
  • [37] Dimer coverings on the sierpinski gasket
    Chang, Shu-Chiuan
    Chen, Lung-Chi
    JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (04) : 631 - 650
  • [38] Spectral triples for the Sierpinski gasket
    Cipriani, Fabio
    Guido, Daniele
    Isola, Tommaso
    Sauvageot, Jean-Luc
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (08) : 4809 - 4869
  • [39] ECCENTRIC DISTANCE SUM OF SIERPINSKI GASKET AND SIERPINSKI NETWORK
    Chen, Jin
    He, Long
    Wang, Qin
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (02)
  • [40] Hausdorff measure of Sierpinski gasket
    周作领
    Science China Mathematics, 1997, (10) : 1016 - 1021