Harmonic embeddings of the Stretched Sierpinski Gasket

被引:0
|
作者
Ugo Bessi
机构
[1] Università Roma Tre,Dipartimento di Matematica
来源
Nonlinear Differential Equations and Applications NoDEA | 2023年 / 30卷
关键词
31C25; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
P. Alonso-Ruiz, U. Freiberg and J. Kigami have defined a large family of resistance forms on the Stretched Sierpinski Gasket G. In the present paper we introduce a system of coordinates on G (technically, an embedding of G into R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{R}^2$$\end{document}) such thatthese forms are defined on C1(R2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1(\textbf{R}^2,\textbf{R})$$\end{document} andall affine functions are harmonic for them. We do this adapting a standard method from the Harmonic Sierpinski Gasket: we start finding a sequence Gl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_l$$\end{document} of pre-fractals such that all affine functions are harmonic on Gl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_l$$\end{document}. After showing that this property is inherited by the stretched harmonic gasket G, we use the formula for the Laplacian of a composition to prove that, for a natural measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} on G, C2(R2,R)⊂D(Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2(\textbf{R}^2,\textbf{R})\subset {{\mathcal {D}}}(\Delta )$$\end{document} and Teplyaev’s formula for the Laplacian of C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document} functions holds. Lastly, we use the expression for Δu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta u$$\end{document} to show that the form we have found is closable in L2(G,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(G,\mu )$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] A noncommutative Sierpinski gasket
    Cipriani, Fabio E. G.
    Guido, Daniele
    Isola, Tommaso
    Sauvageot, Jean-Luc
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (05)
  • [22] On the box-counting dimension of graphs of harmonic functions on the Sierpinski gasket
    Sahu, Abhilash
    Priyadarshi, Amit
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 487 (02)
  • [23] Absolutely Minimizing Lipschitz Extensions and infinity harmonic functions on the Sierpinski gasket
    Camilli, Fabio
    Capitanelli, Raffaela
    Vivaldi, Maria Agostina
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 163 : 71 - 85
  • [24] Mean Value Properties of Harmonic Functions on Sierpinski Gasket Type Fractals
    Hua Qiu
    Robert S. Strichartz
    Journal of Fourier Analysis and Applications, 2013, 19 : 943 - 966
  • [25] GEODESICS OF THE SIERPINSKI GASKET
    Saltan, Mustafa
    Ozdemir, Yunus
    Demir, Bunyamin
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (03)
  • [26] Sandpiles on a Sierpinski gasket
    Daerden, F
    Vanderzande, C
    PHYSICA A, 1998, 256 (3-4): : 533 - 546
  • [27] Sandpiles on a Sierpinski gasket
    Daerden, Frank
    Vanderzande, Carlo
    Physica A: Statistical Mechanics and its Applications, 1998, 256 (3-4): : 533 - 546
  • [28] Slicing the Sierpinski gasket
    Barany, Balazs
    Ferguson, Andrew
    Simon, Karoly
    NONLINEARITY, 2012, 25 (06) : 1753 - 1770
  • [29] Coloring Sierpinski graphs and Sierpinski gasket graphs
    Klavzar, Sandi
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (02): : 513 - 522
  • [30] Quantum walks on Sierpinski gasket and Sierpinski tetrahedron
    Xie, Hui-Hui
    Zeng, Guo-Mo
    QUANTUM INFORMATION PROCESSING, 2021, 20 (07)