Harmonic embeddings of the Stretched Sierpinski Gasket

被引:0
|
作者
Ugo Bessi
机构
[1] Università Roma Tre,Dipartimento di Matematica
关键词
31C25; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
P. Alonso-Ruiz, U. Freiberg and J. Kigami have defined a large family of resistance forms on the Stretched Sierpinski Gasket G. In the present paper we introduce a system of coordinates on G (technically, an embedding of G into R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{R}^2$$\end{document}) such thatthese forms are defined on C1(R2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1(\textbf{R}^2,\textbf{R})$$\end{document} andall affine functions are harmonic for them. We do this adapting a standard method from the Harmonic Sierpinski Gasket: we start finding a sequence Gl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_l$$\end{document} of pre-fractals such that all affine functions are harmonic on Gl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_l$$\end{document}. After showing that this property is inherited by the stretched harmonic gasket G, we use the formula for the Laplacian of a composition to prove that, for a natural measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} on G, C2(R2,R)⊂D(Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2(\textbf{R}^2,\textbf{R})\subset {{\mathcal {D}}}(\Delta )$$\end{document} and Teplyaev’s formula for the Laplacian of C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document} functions holds. Lastly, we use the expression for Δu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta u$$\end{document} to show that the form we have found is closable in L2(G,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(G,\mu )$$\end{document}.
引用
收藏
相关论文
共 50 条