Factors with Red–Blue Coloring of Claw-Free Graphs and Cubic Graphs

被引:0
|
作者
Michitaka Furuya
Mikio Kano
机构
[1] Kitasato University,College of Liberal Arts and Sciences
[2] Ibaraki University,undefined
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Degree factor; Two-tone factor; Cubic graph; Claw-free graph; 05C70; 05C75;
D O I
暂无
中图分类号
学科分类号
摘要
Among some results, we prove the following two theorems. (i) Let G be a connected claw-free graph. We arbitrarily color every vertex of G red or blue so that the number of red vertices is even. Then G has vertex-disjoint paths whose end-vertices are exactly the same as the red vertices of G. (ii) Let G be a 3-edge connected claw-free cubic graph. We arbitrarily color every vertex of G red or blue so that the number of red vertices is even and the distance between any two red vertices is at least 3. Then G has a factor F such that degF(x)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg _F(x) =1$$\end{document} for every red vertex x and degF(y)=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg _F(y)=2$$\end{document} for every blue vertex y.
引用
收藏
相关论文
共 50 条
  • [41] On Strong Edge-Coloring of Claw-Free Subcubic Graphs
    Jian-Bo Lv
    Jianxi Li
    Xiaoxia Zhang
    Graphs and Combinatorics, 2022, 38
  • [42] LIST-COLORING CLAW-FREE GRAPHS WITH Δ-1 COLORS
    Cranston, Daniel W.
    Rabern, Landon
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (02) : 726 - 748
  • [43] Injective edge-coloring of claw-free subcubic graphs
    Cui, Qing
    Han, Zhenmeng
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 47 (05)
  • [44] A NOTE ON CONNECTED FACTORS IN CLAW-FREE GRAPHS
    XU Baoguang
    JournalofSystemsScienceandComplexity, 2001, (01) : 91 - 92
  • [45] On f-factors in claw-free graphs
    Fourtounelli, Olga
    Katerinis, P.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 52 : 133 - 140
  • [46] On Strong Edge-Coloring of Claw-Free Subcubic Graphs
    Lv, Jian-Bo
    Li, Jianxi
    Zhang, Xiaoxia
    GRAPHS AND COMBINATORICS, 2022, 38 (03)
  • [47] On coloring a class of claw-free and hole-twin-free graphs
    Dai, Yingjun
    Foley, Angele M.
    Hoang, Chinh T.
    DISCRETE APPLIED MATHEMATICS, 2022, 323 : 162 - 170
  • [48] ON 2-FACTORS IN CLAW-FREE GRAPHS
    LI Guojun(Mathematics Department
    SystemsScienceandMathematicalSciences, 1995, (04) : 369 - 372
  • [49] The structure of even factors in claw-free graphs
    Xiong, Liming
    Lu, Mei
    Han, Longsheng
    DISCRETE MATHEMATICS, 2009, 309 (08) : 2417 - 2423
  • [50] Connected even factors in claw-free graphs
    Lia, MingChu
    Xiong, Liming
    Broersma, H. J.
    DISCRETE MATHEMATICS, 2008, 308 (11) : 2282 - 2284