Factors with Red–Blue Coloring of Claw-Free Graphs and Cubic Graphs

被引:0
|
作者
Michitaka Furuya
Mikio Kano
机构
[1] Kitasato University,College of Liberal Arts and Sciences
[2] Ibaraki University,undefined
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Degree factor; Two-tone factor; Cubic graph; Claw-free graph; 05C70; 05C75;
D O I
暂无
中图分类号
学科分类号
摘要
Among some results, we prove the following two theorems. (i) Let G be a connected claw-free graph. We arbitrarily color every vertex of G red or blue so that the number of red vertices is even. Then G has vertex-disjoint paths whose end-vertices are exactly the same as the red vertices of G. (ii) Let G be a 3-edge connected claw-free cubic graph. We arbitrarily color every vertex of G red or blue so that the number of red vertices is even and the distance between any two red vertices is at least 3. Then G has a factor F such that degF(x)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg _F(x) =1$$\end{document} for every red vertex x and degF(y)=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg _F(y)=2$$\end{document} for every blue vertex y.
引用
收藏
相关论文
共 50 条
  • [1] Factors with Red-Blue Coloring of Claw-Free Graphs and Cubic Graphs
    Furuya, Michitaka
    Kano, Mikio
    GRAPHS AND COMBINATORICS, 2023, 39 (04)
  • [2] On Coloring a Class of Claw-free Graphs
    Dai, Yingjun
    Foley, Angele M.
    Hoang, Chinh T.
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2019, 346 : 369 - 377
  • [3] Counting claw-free cubic graphs
    Palmer, Edgar M.
    Read, Ronald C.
    Robinson, Robert W.
    2003, Society for Industrial and Applied Mathematics Publications (16)
  • [4] A note on strong edge-coloring of claw-free cubic graphs
    Han, Zhenmeng
    Cui, Qing
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (03) : 2503 - 2508
  • [5] A note on strong edge-coloring of claw-free cubic graphs
    Zhenmeng Han
    Qing Cui
    Journal of Applied Mathematics and Computing, 2023, 69 : 2503 - 2508
  • [6] Counting claw-free cubic graphs
    Palmer, EM
    Read, RC
    Robinson, RW
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2003, 16 (01) : 65 - 73
  • [7] FACTORS OF CLAW-FREE GRAPHS
    LONC, Z
    RYJACEK, Z
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1991, 41 (01) : 120 - 130
  • [8] COLORING CLAW-FREE GRAPHS WITH Δ-1 COLORS
    Cranston, Daniel W.
    Rabern, Landon
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) : 534 - 549
  • [9] Clique-Coloring Claw-Free Graphs
    Zuosong Liang
    Erfang Shan
    Liying Kang
    Graphs and Combinatorics, 2016, 32 : 1473 - 1488
  • [10] Clique-Coloring Claw-Free Graphs
    Liang, Zuosong
    Shan, Erfang
    Kang, Liying
    GRAPHS AND COMBINATORICS, 2016, 32 (04) : 1473 - 1488