Factors with Red–Blue Coloring of Claw-Free Graphs and Cubic Graphs

被引:0
|
作者
Michitaka Furuya
Mikio Kano
机构
[1] Kitasato University,College of Liberal Arts and Sciences
[2] Ibaraki University,undefined
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Degree factor; Two-tone factor; Cubic graph; Claw-free graph; 05C70; 05C75;
D O I
暂无
中图分类号
学科分类号
摘要
Among some results, we prove the following two theorems. (i) Let G be a connected claw-free graph. We arbitrarily color every vertex of G red or blue so that the number of red vertices is even. Then G has vertex-disjoint paths whose end-vertices are exactly the same as the red vertices of G. (ii) Let G be a 3-edge connected claw-free cubic graph. We arbitrarily color every vertex of G red or blue so that the number of red vertices is even and the distance between any two red vertices is at least 3. Then G has a factor F such that degF(x)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg _F(x) =1$$\end{document} for every red vertex x and degF(y)=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg _F(y)=2$$\end{document} for every blue vertex y.
引用
收藏
相关论文
共 50 条
  • [31] Paired-Domination in Claw-Free Cubic Graphs
    Odile Favaron
    Michael A. Henning
    Graphs and Combinatorics, 2004, 20 : 447 - 456
  • [32] Counting labeled claw-free cubic graphs by connectivity
    Chae, Gab-Byung
    DISCRETE MATHEMATICS, 2008, 308 (22) : 5136 - 5143
  • [33] Edge decomposition of connected claw-free cubic graphs
    Hong, Yanmei
    Liu, Qinghai
    Yu, Nannan
    DISCRETE APPLIED MATHEMATICS, 2020, 284 : 246 - 250
  • [34] The zero forcing number of claw-free cubic graphs
    He, Mengya
    Li, Huixian
    Song, Ning
    Ji, Shengjin
    DISCRETE APPLIED MATHEMATICS, 2024, 359 : 321 - 330
  • [35] Upper Total Domination in Claw-Free Cubic Graphs
    Babikir, Ammar
    Henning, Michael A.
    GRAPHS AND COMBINATORICS, 2022, 38 (06)
  • [36] Bounds on total domination in claw-free cubic graphs
    Favaron, Odile
    Henning, Michael A.
    DISCRETE MATHEMATICS, 2008, 308 (16) : 3491 - 3507
  • [37] On a conjecture on total domination in claw-free cubic graphs
    Southey, Justin
    Henning, Michael A.
    DISCRETE MATHEMATICS, 2010, 310 (21) : 2984 - 2999
  • [38] Some classical combinatorial problems on circulant and claw-free graphs: the isomorphism and coloring problems on circulant graphs and the stable set problem on claw-free graphs
    Pietropaoli, Ugo
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2009, 7 (03): : 297 - 300
  • [39] Some classical combinatorial problems on circulant and claw-free graphs: the isomorphism and coloring problems on circulant graphs and the stable set problem on claw-free graphs
    Ugo Pietropaoli
    4OR, 2009, 7 : 297 - 300
  • [40] Paired-domination in claw-free cubic graphs
    Favaron, O
    Henning, MA
    GRAPHS AND COMBINATORICS, 2004, 20 (04) : 447 - 456