Large deflection electro-mechanical analysis of composite structures bonded with macro-fiber composite actuators considering thermal loads

被引:0
|
作者
M. N. Rao
R. Schmidt
K.-U. Schröder
机构
[1] RWTH Aachen University,Institute of Structural Mechanics and Lightweight Design
来源
关键词
Piezoelectric materials; Macro-fiber composites; Layered composite structures; Shell element; Geometric nonlinearities;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, static analysis of laminated composite plates and shells bonded with macro-fiber composite (MFC) actuators under thermo-electro-mechanical loads is considered. Most earlier studies in the literature focused on the effects of MFC actuation power and fiber orientations on shape deformation of composite plates/shells subjected to electrical voltage only. Also most of the earlier studies on MFC-d33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {d}_{33}$$\end{document} bonded smart structures in literature are performed by commercial softwares like Ansys or Abaqus using the thermal strain equivalent approach to model the piezomechanical coupling. Here, our earlier developed geometrically nonlinear plate and shell finite elements considering finite rotation theory are extended for MFC actuator-bonded composite structures taking into account additionally the response to temperature gradients. An improved Reissner–Mindlin hypothesis is considered to derive the variational formulation, in which a parabolic assumption of transverse shear strains across the thickness is assumed. MFC actuators dominated by the d33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {d}_{33}$$\end{document} effect (MFC-d33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {d}_{33}$$\end{document}) with arbitrary fiber orientations are considered. The numerical model is validated with composite beams and plates by comparing the results of simulations with experimental investigations existing in the literature. An angle-ply composite shell structure is studied in detail concerning geometrically nonlinear analysis of bending and twisting deformations under different MFC-d33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {d}_{33}$$\end{document} fiber orientations under electric loading. Shape control of thermally induced deformations of composite plates and shells is performed using bonded MFC-d33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {d}_{33}$$\end{document} actuators and the significance of the present geometrically nonlinear model is highlighted.
引用
收藏
页码:1459 / 1480
页数:21
相关论文
共 50 条
  • [41] Large deflection analysis of a fiber reinforced composite beam
    Akbas, Seref D.
    STEEL AND COMPOSITE STRUCTURES, 2018, 27 (05): : 567 - 576
  • [42] Experimental investigation of smart hull structures based on macro fiber composite actuators
    Sohn, Jung-Woo
    Kim, Heung-Soo
    Choi, Seung-Bok
    Kim, Kyung Su
    Experimental Mechanics in Nano and Biotechnology, Pts 1 and 2, 2006, 326-328 : 1419 - 1422
  • [43] Health Monitoring of Cylindrical Structures Using Torsional Wave Generated by Piezoelectric Macro-fiber Composite
    Cui, Lin
    Liu, Yu
    Soh, Chee Kiong
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS 2011, 2011, 7984
  • [44] Implementation of a High-Voltage DC plus AC Power Supply for a Macro-Fiber Composite Actuators Testbed
    Verne, Santiago A.
    Donati, Javier
    2024 ARGENTINE CONFERENCE ON ELECTRONICS, CAE, 2024, : 26 - 31
  • [45] An electro-mechanical impedance model of a cracked composite beam with adhesively bonded piezoelectric patches
    Yan, Wei
    Cai, J. B.
    Chen, W. Q.
    JOURNAL OF SOUND AND VIBRATION, 2011, 330 (02) : 287 - 307
  • [46] Macro-Fiber Composite Actuators for Flow Control of a Variable Camber Airfoil (vol 22, pg 87, 2011)
    Bilgen, Onur
    De Marqui Junior, Carlos
    Kochersberger, Kevin B.
    Inman, Daniel J.
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2011, 22 (06) : 611 - 611
  • [47] Suppression of aero-thermal large deflections and snap-through behaviors of composite panels using Macro Fiber Composite actuators
    Park, JS
    Kim, JH
    SMART MATERIALS & STRUCTURES, 2004, 13 (06): : 1448 - 1459
  • [48] ANALYSIS OF BONDED REPAIRS TO DAMAGED FIBER COMPOSITE STRUCTURES
    JONES, R
    CALLINAN, RJ
    AGGARWAL, KC
    ENGINEERING FRACTURE MECHANICS, 1983, 17 (01) : 37 - 46
  • [49] Optimal placement of sensor and actuators for vibration control of underwater cylinder bonded with macro fiber composite
    An F.
    Zhang W.-L.
    Duan Y.
    Xiong C.-X.
    Chuan Bo Li Xue/Journal of Ship Mechanics, 2019, 23 (04): : 488 - 496
  • [50] Large displacement spring-like electro-mechanical thermal actuators with insulator constraint beams
    Luo, JK
    Fu, YQ
    Flewitt, AJ
    Spearing, SM
    Fleck, NA
    Milne, WI
    SMART SENSORS, ACTUATORS, AND MEMS II, 2005, 5836 : 67 - 77