Large deflection electro-mechanical analysis of composite structures bonded with macro-fiber composite actuators considering thermal loads

被引:0
|
作者
M. N. Rao
R. Schmidt
K.-U. Schröder
机构
[1] RWTH Aachen University,Institute of Structural Mechanics and Lightweight Design
来源
关键词
Piezoelectric materials; Macro-fiber composites; Layered composite structures; Shell element; Geometric nonlinearities;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, static analysis of laminated composite plates and shells bonded with macro-fiber composite (MFC) actuators under thermo-electro-mechanical loads is considered. Most earlier studies in the literature focused on the effects of MFC actuation power and fiber orientations on shape deformation of composite plates/shells subjected to electrical voltage only. Also most of the earlier studies on MFC-d33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {d}_{33}$$\end{document} bonded smart structures in literature are performed by commercial softwares like Ansys or Abaqus using the thermal strain equivalent approach to model the piezomechanical coupling. Here, our earlier developed geometrically nonlinear plate and shell finite elements considering finite rotation theory are extended for MFC actuator-bonded composite structures taking into account additionally the response to temperature gradients. An improved Reissner–Mindlin hypothesis is considered to derive the variational formulation, in which a parabolic assumption of transverse shear strains across the thickness is assumed. MFC actuators dominated by the d33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {d}_{33}$$\end{document} effect (MFC-d33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {d}_{33}$$\end{document}) with arbitrary fiber orientations are considered. The numerical model is validated with composite beams and plates by comparing the results of simulations with experimental investigations existing in the literature. An angle-ply composite shell structure is studied in detail concerning geometrically nonlinear analysis of bending and twisting deformations under different MFC-d33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {d}_{33}$$\end{document} fiber orientations under electric loading. Shape control of thermally induced deformations of composite plates and shells is performed using bonded MFC-d33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {d}_{33}$$\end{document} actuators and the significance of the present geometrically nonlinear model is highlighted.
引用
收藏
页码:1459 / 1480
页数:21
相关论文
共 50 条
  • [21] Computation of macro-fiber composite integrated thin-walled smart structures
    Zhang, S. Q.
    Zhang, S. Y.
    Chen, M.
    Bai, J.
    Li, J.
    2016 GLOBAL CONFERENCE ON POLYMER AND COMPOSITE MATERIALS (PCM 2016), 2016, 137
  • [22] Compensation of thermally induced distortion in composite structures using macro-fiber composites
    Dano, Marie-Laure
    Gakwaya, Myriam
    Julliere, Benjamin
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2008, 19 (02) : 225 - 233
  • [23] An analytical model of the mechanical properties of the Single Crystal Macro-Fiber Composite actuator
    Lloyd, JM
    Williams, RB
    Inman, DJ
    Wilkie, WK
    SMART STRUCTURES AND MATERIALS 2004: ACTIVE MATERIALS: BEHAVIOR AND MECHANICS, 2004, 5387 : 37 - 46
  • [24] Macro-fiber composite piezoelectric rosettes for acoustic source location in complex structures
    Matt, Howard
    Lanza di Scalea, Francesco
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2007, PTS 1 AND 2, 2007, 6529
  • [25] Macro-fiber composite piezoelectric rosettes for acoustic source location in complex structures
    Matt, Howard M.
    di Scalea, Francesco Lanza
    SMART MATERIALS AND STRUCTURES, 2007, 16 (04) : 1489 - 1499
  • [26] Study on electric-mechanical hysteretic model of Macro-Fiber Composite actuator
    Xue Xiaomin
    Chen Luqi
    Wu Xiaohong
    Sun Qing
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2014, 25 (12) : 1469 - 1483
  • [27] Analysis of energy harvesting devices using macro-fiber composite materials
    Song, Hyun Jeong
    Choi, Young-Tai
    Wereley, Norman M.
    Purekar, Ashish S.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCE AND INFORMATION IN ENGINEERING CONFERENCE, VOL 1, PTS A-C, 2008, : 289 - 298
  • [28] Design, Characterization, and Testing of Macro-Fiber Composite Actuators for Integration on a Fixed-Wing UAV
    Prazenica, Richard J.
    Kim, Daewon
    Moncayo, Hever
    Azizi, Boutros
    Chan, May
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2014, 2014, 9057
  • [29] Large deformation mechanical modeling with bilinear stiffness for Macro-Fiber Composite bimorph based on extending mixing rules
    Hu, Kai-ming
    Li, Hua
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2021, 32 (02) : 127 - 139
  • [30] SIMULATION ANALYSIS OF ELECTRO-MECHANICAL PROPERTY OF PIEZOELECTRIC FIBER COMPOSITE WITH EMBEDDED INTERDIGITAL ELECTRODE
    Xiao Lihan
    Shen Yiping
    Hu Binlaing
    Jiang Shuai
    Fu Zhiqiang
    PROCEEDINGS OF THE 2020 15TH SYMPOSIUM ON PIEZOELECTRCITY, ACOUSTIC WAVES AND DEVICE APPLICATIONS (SPAWDA), 2021, : 490 - 494