Large deflection electro-mechanical analysis of composite structures bonded with macro-fiber composite actuators considering thermal loads

被引:0
|
作者
M. N. Rao
R. Schmidt
K.-U. Schröder
机构
[1] RWTH Aachen University,Institute of Structural Mechanics and Lightweight Design
来源
关键词
Piezoelectric materials; Macro-fiber composites; Layered composite structures; Shell element; Geometric nonlinearities;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, static analysis of laminated composite plates and shells bonded with macro-fiber composite (MFC) actuators under thermo-electro-mechanical loads is considered. Most earlier studies in the literature focused on the effects of MFC actuation power and fiber orientations on shape deformation of composite plates/shells subjected to electrical voltage only. Also most of the earlier studies on MFC-d33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {d}_{33}$$\end{document} bonded smart structures in literature are performed by commercial softwares like Ansys or Abaqus using the thermal strain equivalent approach to model the piezomechanical coupling. Here, our earlier developed geometrically nonlinear plate and shell finite elements considering finite rotation theory are extended for MFC actuator-bonded composite structures taking into account additionally the response to temperature gradients. An improved Reissner–Mindlin hypothesis is considered to derive the variational formulation, in which a parabolic assumption of transverse shear strains across the thickness is assumed. MFC actuators dominated by the d33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {d}_{33}$$\end{document} effect (MFC-d33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {d}_{33}$$\end{document}) with arbitrary fiber orientations are considered. The numerical model is validated with composite beams and plates by comparing the results of simulations with experimental investigations existing in the literature. An angle-ply composite shell structure is studied in detail concerning geometrically nonlinear analysis of bending and twisting deformations under different MFC-d33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {d}_{33}$$\end{document} fiber orientations under electric loading. Shape control of thermally induced deformations of composite plates and shells is performed using bonded MFC-d33\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {d}_{33}$$\end{document} actuators and the significance of the present geometrically nonlinear model is highlighted.
引用
收藏
页码:1459 / 1480
页数:21
相关论文
共 50 条
  • [31] Lead-free piezoceramic macro-fiber composite actuators toward active vibration control systems
    Wang, Binquan
    Huangfu, Geng
    Wang, Jie
    Zhang, Shujun
    Guo, Yiping
    JOURNAL OF MATERIOMICS, 2024, 10 (01) : 78 - 85
  • [32] Active control of thermally induced distortion in composite structures using Macro Fiber Composite actuators
    Dano, M-L
    Julliere, B.
    SMART MATERIALS AND STRUCTURES, 2007, 16 (06) : 2315 - 2322
  • [33] Wind tunnel tests for a flapping wing model with a changeable camber using macro-fiber composite actuators
    Kim, Dae-Kwan
    Han, Jae-Hung
    Kwon, Ki-Jung
    SMART MATERIALS AND STRUCTURES, 2009, 18 (02)
  • [34] Modeling techniques for active shape and vibration control of macro-fiber composite laminated structures
    Zhang, Shun-Qi
    Chen, Min
    Zhao, Guo-Zhong
    Wang, Zhan-Xi
    Schmidt, Ruediger
    Qin, Xian-Sheng
    SMART STRUCTURES AND SYSTEMS, 2017, 19 (06) : 633 - 641
  • [35] Characterization of electro-mechanical response in novel carbon fiber composite materials
    Sherman, Riley
    Chalivendra, Vijaya
    Hall, Asha
    Haile, Mulugeta
    Nataraj, Latha
    Coatney, Michael
    Kim, Yong
    JOURNAL OF COMPOSITE MATERIALS, 2019, 53 (19) : 2675 - 2686
  • [36] Aeroelastic stability analysis of curved composite panels with embedded Macro Fiber Composite actuators
    Zhou, Jian
    Xu, Minglong
    Yang, Zhichun
    COMPOSITE STRUCTURES, 2019, 208 : 725 - 734
  • [37] Experimental study of axial-compressed macro-fiber composite bimorph with multi-layer parallel actuators for large deformation actuation
    Hu, Kai-ming
    Li, Hua
    Wen, Li-Hua
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2020, 31 (08) : 1101 - 1110
  • [39] Numerical research on electro-elastic properties of the macro fiber composite (MFC) actuators
    Zhao, Jianhua
    Man, Xingbo
    Xue, Xiaomin
    Sun, Qing
    Zhang, Ling
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2014, 45 (1-4) : 409 - 415
  • [40] Dynamic effects of embedded macro-fiber composite actuators on ultra-light flexible structures of repeated pattern- a homogenization approach
    Salehian, A.
    Seigler, T. M.
    SHOCK AND VIBRATION, 2012, 19 (01) : 81 - 100