The relationship between single-particle commuting observables lz, sz entangled states and the spin–orbit coupling

被引:0
|
作者
Jiang-Mei Tang
Qing-Sheng Zeng
Yan-Bing Luo
Qiao-Yun Ye
机构
[1] Nanjing University of Aeronautics and Astronautics,College of Electronic and Information Engineering
[2] Nanjing University of Aeronautics and Astronautics,College of Astronautics
[3] Beijing University of Posts and Telecommunications,State Key Laboratory of Information Photonics and Optical Communications
[4] Army Academy of Border and Coastal Defence,undefined
来源
Quantum Information Processing | 2020年 / 19卷
关键词
Single-particle system; Quantum entanglement; Spin–orbit coupling; Freedom degree;
D O I
暂无
中图分类号
学科分类号
摘要
Quantum entanglement is a unique phenomenon which can be described in quantum mechanics. There are two categories of quantum entanglement: one is based on a single-body system in various freedom degrees and another is found in the multi-body system. In recent years, the spin–orbit coupling effect has been widely concerned. Various electronic devices based on the spin–orbit coupling effect have been emerging in an endless stream and bringing great practical application value. At present, the relationship between single-particle commuting observables lz,sz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ l_{z} ,s_{z} $$\end{document} entangled states and the spin–orbit coupling is rarely reported. In this paper, based on the diverse freedom degrees of the quantum entanglement states in a single-body system, the correlation between the sole particle commuting observables lz,sz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ l_{z} ,s_{z} $$\end{document} entangled states and the spin–orbit coupling has been analyzed by MATLAB software and the degree of entanglement is measured according to von Neumann entropy. This work provides innovation to further understand quantum entanglement and demonstrates that there is a close relationship between the degree of entanglement and the spin–orbit coupling coefficient j/2-1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {j \mathord{\left/ {\vphantom {j 2}} \right. \kern-0pt} 2} - {1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-0pt} 4} $$\end{document}. As j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ j $$\end{document} increases, the degree of the maximum entanglement firstly decreases, then increases, afterward decreases and then increases repeatedly, with the maximum value of entanglement degree being 0.6828. When j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ j $$\end{document} is beyond 85.5, the degree of entanglement will not make sense any longer.
引用
收藏
相关论文
共 50 条
  • [41] Single-particle excitations and metal-insulator transition of ultracold Fermi atoms in one-dimensional optical lattice with spin-orbit coupling
    Han, Rui
    Yuan, Feng
    Zhao, Huaisong
    EPL, 2022, 139 (02)
  • [42] Interband spin-orbit coupling between anti-parallel spin states in Pb quantum well states
    Slomski, Bartosz
    Landolt, Gabriel
    Muff, Stefan
    Meier, Fabian
    Osterwalder, Juerg
    Dil, J. Hugo
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [43] Single-particle spin-orbit potentials of the Λ and Σ hyperons based on the quark-model G-matrix
    Kohno, M
    Fujiwara, Y
    Fujita, T
    Nakamoto, C
    Suzuki, Y
    NUCLEAR PHYSICS A, 2000, 670 : 319C - 322C
  • [44] Single-particle levels and spin-orbit splitting in the vicinity of the doubly magic nucleus 48Ca
    Isakov, VI
    PHYSICS OF ATOMIC NUCLEI, 2004, 67 (05) : 911 - 919
  • [45] Single-particle configurations of low- and medium-spin states in 63Cu
    Chatterjee, S.
    Mondal, B.
    Das, S.
    Raut, R.
    Ghugre, S. S.
    Sinha, A. K.
    Garg, U.
    Srivastava, P. C.
    Kumar, Naveen
    Jones, P.
    Laskar, S. R.
    Babra, F. S.
    Biswas, S.
    Saha, S.
    Singh, P.
    Palit, R.
    Palit, R.
    PHYSICAL REVIEW C, 2023, 107 (02)
  • [46] Single-particle levels and spin-orbit splitting in the vicinity of the doubly magic nucleus 48Ca
    V. I. Isakov
    Physics of Atomic Nuclei, 2004, 67 : 911 - 919
  • [47] SPIN-ORBIT SPLITTING EFFECT ON SINGLE-PARTICLE ENERGY LEVELS BASED ON VELOCITY-DEPENDENT POTENTIAL
    LODHI, MAK
    PHYSICAL REVIEW C, 1970, 1 (01): : 365 - +
  • [48] Single-particle spin-orbit strengths of the nucleon and hyperons by SU6 quark-model
    Fujiwara, Y
    Kohno, M
    Fujita, T
    Nakamoto, C
    Suzuki, Y
    NUCLEAR PHYSICS A, 2000, 674 (3-4) : 493 - 514
  • [49] HIGH-SPIN SINGLE-PARTICLE STATES IN ER-152,ER-153
    HORN, D
    YOUNG, GR
    LISTER, CJ
    BAKTASH, C
    PHYSICAL REVIEW C, 1981, 23 (03): : 1047 - 1055
  • [50] Low-decoherence quantum information transmittal scheme based on the single-particle various degrees of freedom entangled states
    Jiang-Mei Tang
    Qing-Sheng Zeng
    Yong Wu
    Di-Gang Fan
    Quantum Information Processing, 2020, 19