The relationship between single-particle commuting observables lz, sz entangled states and the spin–orbit coupling

被引:0
|
作者
Jiang-Mei Tang
Qing-Sheng Zeng
Yan-Bing Luo
Qiao-Yun Ye
机构
[1] Nanjing University of Aeronautics and Astronautics,College of Electronic and Information Engineering
[2] Nanjing University of Aeronautics and Astronautics,College of Astronautics
[3] Beijing University of Posts and Telecommunications,State Key Laboratory of Information Photonics and Optical Communications
[4] Army Academy of Border and Coastal Defence,undefined
来源
Quantum Information Processing | 2020年 / 19卷
关键词
Single-particle system; Quantum entanglement; Spin–orbit coupling; Freedom degree;
D O I
暂无
中图分类号
学科分类号
摘要
Quantum entanglement is a unique phenomenon which can be described in quantum mechanics. There are two categories of quantum entanglement: one is based on a single-body system in various freedom degrees and another is found in the multi-body system. In recent years, the spin–orbit coupling effect has been widely concerned. Various electronic devices based on the spin–orbit coupling effect have been emerging in an endless stream and bringing great practical application value. At present, the relationship between single-particle commuting observables lz,sz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ l_{z} ,s_{z} $$\end{document} entangled states and the spin–orbit coupling is rarely reported. In this paper, based on the diverse freedom degrees of the quantum entanglement states in a single-body system, the correlation between the sole particle commuting observables lz,sz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ l_{z} ,s_{z} $$\end{document} entangled states and the spin–orbit coupling has been analyzed by MATLAB software and the degree of entanglement is measured according to von Neumann entropy. This work provides innovation to further understand quantum entanglement and demonstrates that there is a close relationship between the degree of entanglement and the spin–orbit coupling coefficient j/2-1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {j \mathord{\left/ {\vphantom {j 2}} \right. \kern-0pt} 2} - {1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-0pt} 4} $$\end{document}. As j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ j $$\end{document} increases, the degree of the maximum entanglement firstly decreases, then increases, afterward decreases and then increases repeatedly, with the maximum value of entanglement degree being 0.6828. When j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ j $$\end{document} is beyond 85.5, the degree of entanglement will not make sense any longer.
引用
收藏
相关论文
共 50 条
  • [21] EXCHANGE PART OF SINGLE-PARTICLE SPIN-ORBIT POTENTIAL FOLLOWING FROM NUCLEON-NUCLEON SPIN-ORBIT INTERACTION
    PENZEL, R
    STOCKER, W
    ZEITSCHRIFT FUR NATURFORSCHUNG PART A-ASTROPHYSIK PHYSIK UND PHYSIKALISCHE CHEMIE, 1972, A-27 (05): : 863 - &
  • [22] Recurrent generation of maximally entangled single-particle states via quantum walks on cyclic graphs
    Panda, Dinesh Kumar
    Benjamin, Colin
    PHYSICAL REVIEW A, 2023, 108 (02)
  • [23] Single-particle states in Dy-149(66)83 at high spin
    Gupta, M
    Das, P
    Patel, SB
    Bhowmik, RK
    Werner, T
    Akovali, YA
    PHYSICAL REVIEW C, 1996, 54 (04): : 1610 - 1616
  • [24] A Microscopic Particle-Vibration Coupling Model Applied to Single-Particle States and Giant Resonances
    Colo, G.
    Bortignon, P. F.
    Brenna, M.
    Cao, L.
    Mizuyama, K.
    Sagawa, H.
    Vigezzi, E.
    NUCLEAR STRUCTURE AND DYNAMICS '12, 2012, 1491 : 146 - 151
  • [25] SINGLE-PARTICLE STATES AT VERY HIGH-SPIN IN THE LIGHT DYSPROSIUM ISOTOPES
    HORN, D
    TOWNER, IS
    HAUSSER, O
    WARD, D
    ANDREWS, HR
    LONE, MA
    SHARPEYSCHAFER, JF
    RUD, N
    TARAS, P
    NUCLEAR PHYSICS A, 1985, 441 (02) : 344 - 380
  • [26] SINGLE-PARTICLE STRUCTURE EFFECT ON HIGH-SPIN NUCLEAR-STATES
    DUDEK, J
    JOURNAL DE PHYSIQUE, 1980, 41 : 18 - 38
  • [27] SINGLE-PARTICLE SPECTRUM AND SPIN-ORBIT SPLITTINGS IN RELATIVISTIC MEAN-FIELD THEORY
    WARRIER, LS
    GAMBHIR, YK
    PHYSICAL REVIEW C, 1994, 49 (02): : 871 - 877
  • [28] Controlling entangled spin-orbit coupling of 5d states with interfacial heterostructure engineering
    Kim, J. -W.
    Choi, Y.
    Chun, S. H.
    Haskel, D.
    Yi, D.
    Ramesh, R.
    Liu, J.
    Ryan, P. J.
    PHYSICAL REVIEW B, 2018, 97 (09)
  • [29] SPIN-ORBIT-SPLITTING FOR SINGLE-PARTICLE AND SINGLE-HOLE ENERGIES - INTERPLAY OF RELATIVITY AND CORE POLARIZATION
    ZAMICK, L
    ZHENG, DC
    MUTHER, H
    PHYSICAL REVIEW C, 1992, 45 (06): : 2763 - 2770
  • [30] SURFACE COUPLING TO COLLECTIVE AND SINGLE-PARTICLE SPIN MODES IN NORMAL HE-3
    BOGACZ, SA
    KETTERSON, JB
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1987, 26 : 225 - 226