The relationship between single-particle commuting observables lz, sz entangled states and the spin–orbit coupling

被引:0
|
作者
Jiang-Mei Tang
Qing-Sheng Zeng
Yan-Bing Luo
Qiao-Yun Ye
机构
[1] Nanjing University of Aeronautics and Astronautics,College of Electronic and Information Engineering
[2] Nanjing University of Aeronautics and Astronautics,College of Astronautics
[3] Beijing University of Posts and Telecommunications,State Key Laboratory of Information Photonics and Optical Communications
[4] Army Academy of Border and Coastal Defence,undefined
来源
Quantum Information Processing | 2020年 / 19卷
关键词
Single-particle system; Quantum entanglement; Spin–orbit coupling; Freedom degree;
D O I
暂无
中图分类号
学科分类号
摘要
Quantum entanglement is a unique phenomenon which can be described in quantum mechanics. There are two categories of quantum entanglement: one is based on a single-body system in various freedom degrees and another is found in the multi-body system. In recent years, the spin–orbit coupling effect has been widely concerned. Various electronic devices based on the spin–orbit coupling effect have been emerging in an endless stream and bringing great practical application value. At present, the relationship between single-particle commuting observables lz,sz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ l_{z} ,s_{z} $$\end{document} entangled states and the spin–orbit coupling is rarely reported. In this paper, based on the diverse freedom degrees of the quantum entanglement states in a single-body system, the correlation between the sole particle commuting observables lz,sz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ l_{z} ,s_{z} $$\end{document} entangled states and the spin–orbit coupling has been analyzed by MATLAB software and the degree of entanglement is measured according to von Neumann entropy. This work provides innovation to further understand quantum entanglement and demonstrates that there is a close relationship between the degree of entanglement and the spin–orbit coupling coefficient j/2-1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {j \mathord{\left/ {\vphantom {j 2}} \right. \kern-0pt} 2} - {1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-0pt} 4} $$\end{document}. As j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ j $$\end{document} increases, the degree of the maximum entanglement firstly decreases, then increases, afterward decreases and then increases repeatedly, with the maximum value of entanglement degree being 0.6828. When j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ j $$\end{document} is beyond 85.5, the degree of entanglement will not make sense any longer.
引用
收藏
相关论文
共 50 条
  • [31] SURFACE COUPLING TO COLLECTIVE AND SINGLE-PARTICLE SPIN MODES IN NORMAL HE-3
    BOGACZ, SA
    KETTERSON, JB
    JOURNAL OF LOW TEMPERATURE PHYSICS, 1988, 71 (5-6) : 445 - 461
  • [32] INTERACTION BETWEEN SINGLE-PARTICLE RESONANCE AND STATES OF DEFORMED-NUCLEI
    KNYAZKOV, OM
    MAJOROV, VP
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA FIZIKA KHIMIYA, 1978, (01): : 35 - 43
  • [33] Effect of particle-vibration coupling on single-particle states: A consistent study within the Skyrme framework
    Colo, Gianluca
    Sagawa, Hiroyuki
    Bortignon, Pier Francesco
    PHYSICAL REVIEW C, 2010, 82 (06):
  • [34] Properties of single-particle states in a fully self-consistent particle-vibration coupling approach
    Cao, Li-Gang
    Colo, G.
    Sagawa, H.
    Bortignon, P. F.
    PHYSICAL REVIEW C, 2014, 89 (04):
  • [35] ONE-BOSON EXCHANGE POTENTIALS AND SPIN-ORBIT-SPLITTING OF SINGLE-PARTICLE LEVELS IN NUCLEI
    SAVUSHKIN, LN
    FOMENKO, VN
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1978, 28 (01): : 29 - 32
  • [36] STUDY OF HIGH-SPIN STATES IN NUCLEI WITHIN THE FRAMEWORK OF A SINGLE-PARTICLE MODEL
    DALAFI, HR
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1981, 64 (01): : 54 - 64
  • [37] Green's function method for the spin and pseudospin symmetries in the single-particle resonant states
    Sun, Ting-Ting
    Lu, Wan-Li
    Qian, Long
    Li, Yu-Xiao
    PHYSICAL REVIEW C, 2019, 99 (03)
  • [38] Designing three-way-entangled and nonlocal two-way-entangled single-particle states via alternate quantum walks
    Panda, Dinesh Kumar
    Benjamin, Colin
    PHYSICAL REVIEW A, 2025, 111 (01)
  • [39] MONOPOLE (PN) EXCITATIONS AND ISOBARIC-SPIN SPLITTING OF SINGLE-PARTICLE AND SINGLE-HOLE STATES
    FRENCH, JB
    MACFARLANE, MH
    PHYSICS LETTERS, 1962, 2 (05): : 255 - 257
  • [40] Sensitivity of Λ single-particle energies to the ΛN spin-orbit coupling and to nuclear core structure in p-shell and sd-shell hypernuclei
    Vesely, P.
    Hiyama, E.
    Hrtankova, J.
    Mares, J.
    NUCLEAR PHYSICS A, 2016, 954 : 260 - 272