The relationship between single-particle commuting observables lz, sz entangled states and the spin–orbit coupling

被引:0
|
作者
Jiang-Mei Tang
Qing-Sheng Zeng
Yan-Bing Luo
Qiao-Yun Ye
机构
[1] Nanjing University of Aeronautics and Astronautics,College of Electronic and Information Engineering
[2] Nanjing University of Aeronautics and Astronautics,College of Astronautics
[3] Beijing University of Posts and Telecommunications,State Key Laboratory of Information Photonics and Optical Communications
[4] Army Academy of Border and Coastal Defence,undefined
来源
关键词
Single-particle system; Quantum entanglement; Spin–orbit coupling; Freedom degree;
D O I
暂无
中图分类号
学科分类号
摘要
Quantum entanglement is a unique phenomenon which can be described in quantum mechanics. There are two categories of quantum entanglement: one is based on a single-body system in various freedom degrees and another is found in the multi-body system. In recent years, the spin–orbit coupling effect has been widely concerned. Various electronic devices based on the spin–orbit coupling effect have been emerging in an endless stream and bringing great practical application value. At present, the relationship between single-particle commuting observables lz,sz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ l_{z} ,s_{z} $$\end{document} entangled states and the spin–orbit coupling is rarely reported. In this paper, based on the diverse freedom degrees of the quantum entanglement states in a single-body system, the correlation between the sole particle commuting observables lz,sz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ l_{z} ,s_{z} $$\end{document} entangled states and the spin–orbit coupling has been analyzed by MATLAB software and the degree of entanglement is measured according to von Neumann entropy. This work provides innovation to further understand quantum entanglement and demonstrates that there is a close relationship between the degree of entanglement and the spin–orbit coupling coefficient j/2-1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {j \mathord{\left/ {\vphantom {j 2}} \right. \kern-0pt} 2} - {1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-0pt} 4} $$\end{document}. As j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ j $$\end{document} increases, the degree of the maximum entanglement firstly decreases, then increases, afterward decreases and then increases repeatedly, with the maximum value of entanglement degree being 0.6828. When j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ j $$\end{document} is beyond 85.5, the degree of entanglement will not make sense any longer.
引用
收藏
相关论文
共 50 条
  • [1] The relationship between single-particle commuting observables lz, sz entangled states and the spin-orbit coupling
    Tang, Jiang-Mei
    Zeng, Qing-Sheng
    Luo, Yan-Bing
    Ye, Qiao-Yun
    QUANTUM INFORMATION PROCESSING, 2020, 19 (01)
  • [2] Observation of spin-orbit splitting in Λ single-particle states
    Ajimura, S
    Hayakawa, H
    Kishimoto, T
    Kohri, H
    Matsuoka, K
    Minami, S
    Mori, T
    Morikubo, K
    Saji, E
    Sakaguchi, A
    Shimizu, Y
    Sumihama, M
    Chrien, RE
    May, M
    Pile, P
    Rusek, A
    Sutter, R
    Eugenio, P
    Franklin, G
    Khaustov, P
    Paschke, K
    Quinn, BP
    Schumacher, RA
    Franz, J
    Fukuda, T
    Noumi, H
    Outa, H
    Gan, L
    Tang, L
    Yuan, L
    Tamura, H
    Nakano, J
    Tamagawa, T
    Tanida, K
    Sawafta, R
    PHYSICAL REVIEW LETTERS, 2001, 86 (19) : 4255 - 4258
  • [3] SINGLE-PARTICLE SPIN-ORBIT SPLITTINGS IN NUCLEI
    ANDO, K
    BANDO, H
    PROGRESS OF THEORETICAL PHYSICS, 1981, 66 (01): : 227 - 250
  • [4] RELATIVISTIC SINGLE-PARTICLE MOTION AND SPIN-ORBIT-COUPLING IN NUCLEI AND HYPER-NUCLEI
    BROCKMANN, R
    WEISE, W
    NUCLEAR PHYSICS A, 1981, 355 (02) : 365 - 382
  • [5] ON THE GEOMETRICAL SHAPE OF THE SINGLE-PARTICLE SPIN-ORBIT POTENTIAL
    BHATTACHARYA, R
    ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1985, 322 (04): : 665 - 667
  • [6] RARE-EARTH NUCLEI SINGLE-PARTICLE STATES IN A DEFORMED WOODS-SAXON WELL WITH DEFORMED SPIN-ORBIT COUPLING
    VANRIJ, WI
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (04): : 522 - &
  • [7] THE ROLE OF SPIN IN THE STRONG-COUPLING OF A ROTOR AND SINGLE-PARTICLE
    DEGUISE, H
    ROWE, DJ
    OKAMOTO, R
    NUCLEAR PHYSICS A, 1994, 575 (01) : 46 - 60
  • [8] Research on the correlation between spin-orbit entangled states and the spin-orbit interaction of light
    Tang, Jiang-Mei
    Wang, Shao-Meng
    Gong, Yu-Bin
    QUANTUM INFORMATION PROCESSING, 2025, 24 (01)
  • [9] SINGLE-PARTICLE RADIATION BETWEEN HIGH-SPIN STATES IN GD-147
    BORGGREEN, J
    SLETTEN, G
    BJORNHOLM, S
    PEDERSEN, J
    DELZOPPO, A
    RADFORD, DC
    JANSSENS, RVF
    CHOWDHURY, P
    EMLING, H
    FREKERS, D
    KHOO, TL
    NUCLEAR PHYSICS A, 1987, 466 (02) : 371 - 384
  • [10] Relationship between spin squeezing and single-particle coherence in two-component Bose-Einstein condensates with Josephson coupling
    Jin, G. R.
    Law, C. K.
    PHYSICAL REVIEW A, 2008, 78 (06):