Nontrivial solutions of a higher-order rational difference equation

被引:0
|
作者
S. Stević
机构
[1] Mathematical Institute of the Serbian Academy of Sciences,
来源
Mathematical Notes | 2008年 / 84卷
关键词
difference equation; nonlinear solution; asymptotic; Putnam difference equation;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that, for every k ∈ ℕ, the following generalization of the Putnam difference equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x_{n + 1} = \frac{{x_n + x_{n - 1} + \cdots + x_{n - (k - 1)} + x_{n - k} x_{n - (k + 1)} }} {{x_n x_{n - 1} + x_{n - 2} + \cdots + x_{n - (k + 1)} }}, n \in \mathbb{N}_0 , $$\end{document} has a positive solution with the following asymptotics \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x_n = 1 + (k + 1)e^{ - \lambda ^n } + (k + 1)e^{ - c\lambda ^n } + o(e^{ - c\lambda ^n } ) $$\end{document} for some c > 1 depending on k, and where λ is the root of the polynomial P(λ) = λk+2 − λ − 1 belonging to the interval (1, 2). Using this result, we prove that the equation has a positive solution which is not eventually equal to 1. Also, for the case k = 1, we find all positive eventually equal to unity solutions to the equation.
引用
收藏
页码:718 / 724
页数:6
相关论文
共 50 条
  • [41] Multiple solutions for higher-order difference equations
    Agarwal, RP
    O'Regan, D
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 37 (09) : 39 - 48
  • [42] Dynamics and Solutions of Higher-Order Difference Equations
    Folly-Gbetoula, Mensah
    MATHEMATICS, 2023, 11 (17)
  • [43] Global Behavior of a Higher Order Rational Difference Equation
    Abo-Zeid, R.
    FILOMAT, 2016, 30 (12) : 3265 - 3276
  • [44] GLOBAL DYNAMICS FOR A HIGHER ORDER RATIONAL DIFFERENCE EQUATION
    Li, Xianyi
    Zhou, Li
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (04) : 1261 - 1280
  • [45] Dynamics and Behavior of the Higher Order Rational Difference equation
    El-Dessoky, M. M.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (04) : 743 - 760
  • [46] Qualitative study of a higher order rational difference equation
    Khaliq, Abdul
    Elsayed, E. M.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (05): : 1128 - 1143
  • [47] The global attractivity of a higher order rational difference equation
    Berenhaut, Kenneth S.
    Stevic, Stevo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) : 940 - 944
  • [48] Dynamics of a Higher Order Nonlinear Rational Difference Equation
    Atawna, S.
    Ismail, E. S.
    Hashim, I.
    INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCES 2012 (ICFAS2012), 2012, 1482 : 309 - 314
  • [49] Dynamics of a higher order nonlinear rational difference equation
    Su, YH
    Li, WT
    Stevic, S
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2005, 11 (02) : 133 - 150
  • [50] Higher-order rational solutions for a new integrable nonlocal fifth-order nonlinear Schrodinger equation
    Yang, Yunqing
    Wang, Xin
    Cheng, Xueping
    WAVE MOTION, 2018, 77 : 1 - 11