Nontrivial solutions of a higher-order rational difference equation

被引:0
|
作者
S. Stević
机构
[1] Mathematical Institute of the Serbian Academy of Sciences,
来源
Mathematical Notes | 2008年 / 84卷
关键词
difference equation; nonlinear solution; asymptotic; Putnam difference equation;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that, for every k ∈ ℕ, the following generalization of the Putnam difference equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x_{n + 1} = \frac{{x_n + x_{n - 1} + \cdots + x_{n - (k - 1)} + x_{n - k} x_{n - (k + 1)} }} {{x_n x_{n - 1} + x_{n - 2} + \cdots + x_{n - (k + 1)} }}, n \in \mathbb{N}_0 , $$\end{document} has a positive solution with the following asymptotics \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x_n = 1 + (k + 1)e^{ - \lambda ^n } + (k + 1)e^{ - c\lambda ^n } + o(e^{ - c\lambda ^n } ) $$\end{document} for some c > 1 depending on k, and where λ is the root of the polynomial P(λ) = λk+2 − λ − 1 belonging to the interval (1, 2). Using this result, we prove that the equation has a positive solution which is not eventually equal to 1. Also, for the case k = 1, we find all positive eventually equal to unity solutions to the equation.
引用
收藏
页码:718 / 724
页数:6
相关论文
共 50 条
  • [31] Dynamics of a Higher-Order Nonlinear Difference Equation
    Tang, Guo-Mei
    Hu, Lin-Xia
    Jia, Xiu-Mei
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2010, 2010
  • [32] Global Stability of a Higher-Order Difference Equation
    T. F. Ibrahim
    M. A. El-Moneam
    Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 51 - 58
  • [33] Global Behavior of a Higher-Order Difference Equation
    Li, Tuo
    Jia, Xiu-Mei
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2010, 2010
  • [34] Asymptotic periodicity of a higher-order difference equation
    Stevic, Stevo
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2007, 2007
  • [35] Global Attractivity of a Higher-Order Difference Equation
    Abo-Zeid, R.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012
  • [36] Global Stability of a Higher-Order Difference Equation
    Ibrahim, T. F.
    El-Moneam, M. A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A1): : 51 - 58
  • [37] On the Solutions of a Third Order Rational Difference Equation
    Abo-Zeid, Raafat
    Kamal, Hossam
    THAI JOURNAL OF MATHEMATICS, 2020, 18 (04): : 1865 - 1874
  • [38] General solution to a higher-order linear difference equation and existence of bounded solutions
    Stevo Stević
    Advances in Difference Equations, 2017
  • [39] General solution to a higher-order linear difference equation and existence of bounded solutions
    Stevic, Stevo
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [40] Multiple solutions for higher-order difference equations
    Agarwal, R.P.
    O'Regan, D.
    Computers and Mathematics with Applications, 1999, 37 (09): : 39 - 48