Nontrivial solutions of a higher-order rational difference equation

被引:0
|
作者
S. Stević
机构
[1] Mathematical Institute of the Serbian Academy of Sciences,
来源
Mathematical Notes | 2008年 / 84卷
关键词
difference equation; nonlinear solution; asymptotic; Putnam difference equation;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that, for every k ∈ ℕ, the following generalization of the Putnam difference equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x_{n + 1} = \frac{{x_n + x_{n - 1} + \cdots + x_{n - (k - 1)} + x_{n - k} x_{n - (k + 1)} }} {{x_n x_{n - 1} + x_{n - 2} + \cdots + x_{n - (k + 1)} }}, n \in \mathbb{N}_0 , $$\end{document} has a positive solution with the following asymptotics \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x_n = 1 + (k + 1)e^{ - \lambda ^n } + (k + 1)e^{ - c\lambda ^n } + o(e^{ - c\lambda ^n } ) $$\end{document} for some c > 1 depending on k, and where λ is the root of the polynomial P(λ) = λk+2 − λ − 1 belonging to the interval (1, 2). Using this result, we prove that the equation has a positive solution which is not eventually equal to 1. Also, for the case k = 1, we find all positive eventually equal to unity solutions to the equation.
引用
收藏
页码:718 / 724
页数:6
相关论文
共 50 条
  • [21] On a Higher-Order Nonlinear Difference Equation
    Iricanin, Bratislav D.
    ABSTRACT AND APPLIED ANALYSIS, 2010,
  • [22] On the Dynamics of a Higher-Order Difference Equation
    El-Metwally, H.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012
  • [23] On the solutions of a higher-order difference equation in terms of generalized Fibonacci sequences
    Halim, Yacine
    Bayram, Mustafa
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (11) : 2974 - 2982
  • [24] HIGHER-ORDER FINITE DIFFERENCE SOLUTIONS OF SCHRODINGER EQUATION FOR HELIUM ATOM
    BARRACLO.CG
    MOONEY, JR
    JOURNAL OF CHEMICAL PHYSICS, 1971, 54 (01): : 35 - &
  • [25] Dynamics of a higher order rational difference equation
    Saleh, M.
    Abu-Baha, S.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 181 (01) : 84 - 102
  • [26] Dynamics of a higher order rational difference equation
    Yang, Yi
    Lv, Feibao
    OPTICAL, ELECTRONIC MATERIALS AND APPLICATIONS, PTS 1-2, 2011, 216 : 50 - 55
  • [27] Dynamics Of A Rational Difference Equation Of Higher Order
    Zhang, Cong
    Li, Hong-Xu
    APPLIED MATHEMATICS E-NOTES, 2009, 9 : 80 - 88
  • [28] New rational and breather solutions of a higher-order integrable nonlinear Schrodinger equation
    Ma, Li-Yuan
    Zhang, Yan-Li
    Tang, Li
    Shen, Shou-Feng
    APPLIED MATHEMATICS LETTERS, 2021, 122
  • [29] HIGHER-ORDER RATIONAL SOLUTIONS FOR THE (2+1)-DIMENSIONAL KMN EQUATION
    Wen, Xiaoyong
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2017, 18 (03): : 191 - 198
  • [30] On the solutions of a higher order difference equation
    Abo-Zeid, Raafat
    GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (02) : 165 - 175