Nontrivial solutions of a higher-order rational difference equation

被引:0
|
作者
S. Stević
机构
[1] Mathematical Institute of the Serbian Academy of Sciences,
来源
Mathematical Notes | 2008年 / 84卷
关键词
difference equation; nonlinear solution; asymptotic; Putnam difference equation;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that, for every k ∈ ℕ, the following generalization of the Putnam difference equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x_{n + 1} = \frac{{x_n + x_{n - 1} + \cdots + x_{n - (k - 1)} + x_{n - k} x_{n - (k + 1)} }} {{x_n x_{n - 1} + x_{n - 2} + \cdots + x_{n - (k + 1)} }}, n \in \mathbb{N}_0 , $$\end{document} has a positive solution with the following asymptotics \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x_n = 1 + (k + 1)e^{ - \lambda ^n } + (k + 1)e^{ - c\lambda ^n } + o(e^{ - c\lambda ^n } ) $$\end{document} for some c > 1 depending on k, and where λ is the root of the polynomial P(λ) = λk+2 − λ − 1 belonging to the interval (1, 2). Using this result, we prove that the equation has a positive solution which is not eventually equal to 1. Also, for the case k = 1, we find all positive eventually equal to unity solutions to the equation.
引用
收藏
页码:718 / 724
页数:6
相关论文
共 50 条
  • [1] Nontrivial Solutions of a Higher-Order Rational Difference Equation
    Stevic, S.
    MATHEMATICAL NOTES, 2008, 84 (5-6) : 718 - 724
  • [2] DYNAMICS OF A HIGHER-ORDER RATIONAL DIFFERENCE EQUATION
    Wang, Qi
    Zhang, Qinqin
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (02): : 770 - 787
  • [3] The characteristics of a higher-order rational difference equation
    Dehghan, Mehdi
    Mazrooei-Sebdani, Reza
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (01) : 521 - 528
  • [5] On a Conjecture for a Higher-Order Rational Difference Equation
    Liao, Maoxin
    Tang, Xianhua
    Xu, Changjin
    ADVANCES IN DIFFERENCE EQUATIONS, 2009,
  • [6] Dynamics of a higher-order rational difference equation
    Dehghan, Mehdi
    Mazrooei-Sebdani, Reza
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 178 (02) : 345 - 354
  • [7] On a Conjecture for a Higher-Order Rational Difference Equation
    Maoxin Liao
    Xianhua Tang
    Changjin Xu
    Advances in Difference Equations, 2009
  • [8] On Stability Analysis of Higher-Order Rational Difference Equation
    Khaliq, Abdul
    Alayachi, H. S.
    Noorani, M. S. M.
    Khan, A. Q.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020
  • [9] Global behavior of a higher-order rational difference equation
    Xi, Hongjian
    Sun, Taixiang
    ADVANCES IN DIFFERENCE EQUATIONS, 2006, 2006 (1)
  • [10] Dynamics of a System of Rational Higher-Order Difference Equation
    Sroysang, Banyat
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2013, 2013