On the universality of Maxwell’s equations

被引:0
|
作者
D. H. Sattinger
机构
[1] University of Arizona,Department of Mathematics
来源
关键词
Maxwell’s equations; Universality; Relativity;
D O I
暂无
中图分类号
学科分类号
摘要
Einstein’s theory of relativity is based on the Principle of Equivalence, Hilbert’s on invariant theory and the calculus of variations. The two paradigms are not equivalent. Using the universality of Maxwell’s equations, Hilbert’s variational method is used to determine the energy–momentum tensor uniquely, and to show that general relativity can be formulated on the basis of Maxwellian, rather than specific physical force fields. A unified field theory is proved in which the Maxwellian force fields are all on an equal footing, distinct from the geometric field.
引用
收藏
页码:503 / 523
页数:20
相关论文
共 50 条
  • [41] Spinor representation of Maxwell's equations
    Kulyabov, D. S.
    Korolkova, A. V.
    Sevastianov, L. A.
    V INTERNATIONAL CONFERENCE ON PROBLEMS OF MATHEMATICAL AND THEORETICAL PHYSICS AND MATHEMATICAL MODELLING, 2017, 788
  • [42] Squeezing Maxwell's Equations into the Nanoscale
    Solis, Diego M.
    Taboada, Jose M.
    Landesa, Luis
    Rodriguez, Jose L.
    Obelleiro, Fernando
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2015, 154 : 35 - 50
  • [43] An infinite element for Maxwell's equations
    Demkowicz, L
    Pal, M
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 164 (1-2) : 77 - 94
  • [44] A wave automaton for Maxwell's equations
    C. Vanneste
    The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 23 : 391 - 404
  • [45] A geometric derivation of Maxwell's equations
    Curran, Michael James
    PHYSICS ESSAYS, 2016, 29 (04) : 562 - 566
  • [46] The factorization method for Maxwell's equations
    Kirsch, A
    INVERSE PROBLEMS, 2004, 20 (06) : S117 - S134
  • [47] Sumudu Applications to Maxwell's Equations
    Belgacem, Fethi Bin Muhammad
    PIERS 2009 BEIJING: PROGESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PROCEEDINGS I AND II, 2009, : 779 - 784
  • [48] Mimetic discretizations for Maxwell's equations
    Hyman, JM
    Shashkov, M
    JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 151 (02) : 881 - 909
  • [49] Multigrid method for Maxwell's equations
    Hiptmair, R
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 36 (01) : 204 - 225
  • [50] Global superconvergence for Maxwell's equations
    Lin, Q
    Yan, NN
    MATHEMATICS OF COMPUTATION, 2000, 69 (229) : 159 - 176