On the universality of Maxwell’s equations

被引:0
|
作者
D. H. Sattinger
机构
[1] University of Arizona,Department of Mathematics
来源
关键词
Maxwell’s equations; Universality; Relativity;
D O I
暂无
中图分类号
学科分类号
摘要
Einstein’s theory of relativity is based on the Principle of Equivalence, Hilbert’s on invariant theory and the calculus of variations. The two paradigms are not equivalent. Using the universality of Maxwell’s equations, Hilbert’s variational method is used to determine the energy–momentum tensor uniquely, and to show that general relativity can be formulated on the basis of Maxwellian, rather than specific physical force fields. A unified field theory is proved in which the Maxwellian force fields are all on an equal footing, distinct from the geometric field.
引用
收藏
页码:503 / 523
页数:20
相关论文
共 50 条
  • [31] Obtaining Maxwell's equations heuristically
    Diener, Gerhard
    Weissbarth, Juergen
    Grossmann, Frank
    Schmidt, Ruediger
    AMERICAN JOURNAL OF PHYSICS, 2013, 81 (02) : 120 - 123
  • [32] The solution of Maxwell's equations in multiphysics
    Bathe, Klaus-Juergen
    Zhang, Hou
    Yan, Yiguang
    COMPUTERS & STRUCTURES, 2014, 132 : 99 - 112
  • [33] Maxwell's equations as mechanical law
    Nockel, Jens U.
    EUROPEAN JOURNAL OF PHYSICS, 2022, 43 (04)
  • [34] Maxwell's equations in octonion form
    Gamba, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1998, 111 (03): : 293 - 299
  • [35] A density result for Maxwell's equations
    BenBelgacem, F
    Bernardi, C
    Costabel, M
    Dauge, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (06): : 731 - 736
  • [36] Essential Spectrum for Maxwell's Equations
    Alberti, Giovanni S.
    Brown, Malcolm
    Marletta, Marco
    Wood, Ian
    ANNALES HENRI POINCARE, 2019, 20 (05): : 1471 - 1499
  • [37] Completing Maxwell's equations by symmetrization
    Guillemot, MG
    EUROPHYSICS LETTERS, 2001, 53 (02): : 155 - 161
  • [38] On the semistatic limit for Maxwell's equations
    Jochmann, F
    PARTIAL DIFFERENTIAL EQUATIONS: THEORY AND NUMERICAL SOLUTION, 2000, 406 : 187 - 198
  • [39] Maxwell's Equations: Continuous and Discrete
    Hiptmair, Ralf
    COMPUTATIONAL ELECTROMAGNETISM, 2015, 2148 : 1 - 58
  • [40] Bringing Maxwell's equations to heel
    Mirotznik, MS
    IEEE SPECTRUM, 1999, 36 (08) : 82 - +