On the universality of Maxwell’s equations

被引:0
|
作者
D. H. Sattinger
机构
[1] University of Arizona,Department of Mathematics
来源
关键词
Maxwell’s equations; Universality; Relativity;
D O I
暂无
中图分类号
学科分类号
摘要
Einstein’s theory of relativity is based on the Principle of Equivalence, Hilbert’s on invariant theory and the calculus of variations. The two paradigms are not equivalent. Using the universality of Maxwell’s equations, Hilbert’s variational method is used to determine the energy–momentum tensor uniquely, and to show that general relativity can be formulated on the basis of Maxwellian, rather than specific physical force fields. A unified field theory is proved in which the Maxwellian force fields are all on an equal footing, distinct from the geometric field.
引用
收藏
页码:503 / 523
页数:20
相关论文
共 50 条
  • [21] A wave automaton for Maxwell's equations
    Vanneste, C
    EUROPEAN PHYSICAL JOURNAL B, 2001, 23 (03): : 391 - 404
  • [22] Comment on 'Electronic Maxwell's equations'
    Bialynicki-Birula, Iwo
    NEW JOURNAL OF PHYSICS, 2021, 23 (11):
  • [23] Remark on Maxwell's divergence equations
    Hillion, P
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1999, 18 (01) : 77 - 83
  • [24] Essential Spectrum for Maxwell’s Equations
    Giovanni S. Alberti
    Malcolm Brown
    Marco Marletta
    Ian Wood
    Annales Henri Poincaré, 2019, 20 : 1471 - 1499
  • [25] A CONTROLLABILITY METHOD FOR MAXWELL’S EQUATIONS
    Chaumont-Frelet T.
    Grote M.J.
    Lanteri S.
    Tang A.J.H.
    SIAM Journal on Scientific Computing, 2022, 44 (06): : A3700 - A3727
  • [26] Maxwell's equations for structures with symmetries
    Weiland, T
    Zagorodnov, I
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 180 (01) : 297 - 312
  • [27] A symmetric formulation of Maxwell's equations
    Munera, HA
    Guzman, O
    MODERN PHYSICS LETTERS A, 1997, 12 (28) : 2089 - 2101
  • [28] Isovector solitons and Maxwell's equations
    Vasheghani, A
    Riazi, N
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (03) : 587 - 591
  • [29] On the experimental foundation of Maxwell's equations
    Lämmerzahl, C
    EXACT SOLUTIONS AND SCALAR FIELDS IN GRAVITY: RECENT DEVELOPMENTS, 2001, : 295 - 310
  • [30] Graviton corrections to Maxwell's equations
    Leonard, Katie E.
    Woodard, R. P.
    PHYSICAL REVIEW D, 2012, 85 (10)