Dose reduction potential of vendor-agnostic deep learning model in comparison with deep learning–based image reconstruction algorithm on CT: a phantom study

被引:0
|
作者
Hyunsu Choi
Won Chang
Jong Hyo Kim
Chulkyun Ahn
Heejin Lee
Hae Young Kim
Jungheum Cho
Yoon Jin Lee
Young Hoon Kim
机构
[1] Seoul National University Bundang Hospital,Department of Radiology
[2] Seoul National University College of Medicine,Department of Radiology
[3] and Institute of Radiation Medicine,Department of Transdisciplinary Studies, Program in Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology
[4] Seoul National University Medical Research Center,Department of Applied bioengineering, Graduate School of Convergence Science and Technology
[5] Seoul National University,undefined
[6] Seoul National University,undefined
来源
European Radiology | 2022年 / 32卷
关键词
Deep learning; Tomography, x-ray computed; Phantoms, imaging; Radiation dosage; Artificial intelligence;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1247 / 1255
页数:8
相关论文
共 50 条
  • [1] Dose reduction potential of vendor-agnostic deep learning model in comparison with deep learning-based image reconstruction algorithm on CT: a phantom study
    Choi, Hyunsu
    Chang, Won
    Kim, Jong Hyo
    Ahn, Chulkyun
    Lee, Heejin
    Kim, Hae Young
    Cho, Jungheum
    Lee, Yoon Jin
    Kim, Young Hoon
    [J]. EUROPEAN RADIOLOGY, 2022, 32 (02) : 1247 - 1255
  • [2] Dose reduction potential of a vendor-agnostic deep learning CT reconstruction algorithm: an exploratory study of image quality in assessing small renal masses
    Borgbjerg, J.
    Leland-try, M.
    Kathir, A.
    Longum, A.
    Bomer, J.
    Nasser, S.
    Nielsen, T. K.
    [J]. SCANDINAVIAN JOURNAL OF UROLOGY, 2023, 58 : 28 - 28
  • [3] Comparison of two versions of a deep learning image reconstruction algorithm on CT image quality and dose reduction: A phantom study
    Greffier, Joel
    Dabli, Djamel
    Frandon, Julien
    Hamard, Aymeric
    Belaouni, Asmaa
    Akessoul, Philippe
    Fuamba, Yannick
    Le Roy, Julien
    Guiu, Boris
    Beregi, Jean-Paul
    [J]. MEDICAL PHYSICS, 2021, 48 (10) : 5743 - 5755
  • [4] Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study
    Greffier, Joel
    Hamard, Aymeric
    Pereira, Fabricio
    Barrau, Corinne
    Pasquier, Hugo
    Beregi, Jean Paul
    Frandon, Julien
    [J]. EUROPEAN RADIOLOGY, 2020, 30 (07) : 3951 - 3959
  • [5] Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study
    Joël Greffier
    Aymeric Hamard
    Fabricio Pereira
    Corinne Barrau
    Hugo Pasquier
    Jean Paul Beregi
    Julien Frandon
    [J]. European Radiology, 2020, 30 : 3951 - 3959
  • [6] Impact of an artificial intelligence deep-learning reconstruction algorithm for CT on image quality and potential dose reduction: A phantom study
    Greffier, Joel
    Si-Mohamed, Salim
    Frandon, Julien
    Loisy, Maeliss
    de Oliveira, Fabien
    Beregi, Jean Paul
    Dabli, Djamel
    [J]. MEDICAL PHYSICS, 2022, 49 (08) : 5052 - 5063
  • [7] Improved image quality and dose reduction in abdominal CT with deep-learning reconstruction algorithm: a phantom study
    Joël Greffier
    Quentin Durand
    Julien Frandon
    Salim Si-Mohamed
    Maeliss Loisy
    Fabien de Oliveira
    Jean-Paul Beregi
    Djamel Dabli
    [J]. European Radiology, 2023, 33 : 699 - 710
  • [8] Improved image quality and dose reduction in abdominal CT with deep-learning reconstruction algorithm: a phantom study
    Greffier, Joel
    Durand, Quentin
    Frandon, Julien
    Si-Mohamed, Salim
    Loisy, Maeliss
    de Oliveira, Fabien
    Beregi, Jean-Paul
    Dabli, Djamel
    [J]. EUROPEAN RADIOLOGY, 2023, 33 (01) : 699 - 710
  • [9] Deep Learning Reconstruction at CT: Phantom Study of the Image Characteristics
    Higaki, Toru
    Nakamura, Yuko
    Zhou, Jian
    Yu, Zhou
    Nemoto, Takuya
    Tatsugami, Fuminari
    Awai, Kazuo
    [J]. ACADEMIC RADIOLOGY, 2020, 27 (01) : 82 - 87
  • [10] Value of vendor-agnostic deep learning image denoising in brain computed tomography: A multi-scanner study
    Kapper, Christian
    Mueller, Lukas
    Kronfeld, Andrea
    Mercado, Mario Alberto Abello
    Altmann, Sebastian
    Grauhan, Nils
    Graafen, Dirk
    Brockman, Marc A.
    Othman, Ahmed E.
    [J]. ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2024,