Deep Learning Reconstruction at CT: Phantom Study of the Image Characteristics

被引:160
|
作者
Higaki, Toru [1 ]
Nakamura, Yuko [1 ]
Zhou, Jian [2 ]
Yu, Zhou [2 ]
Nemoto, Takuya [3 ]
Tatsugami, Fuminari [1 ]
Awai, Kazuo [1 ]
机构
[1] Hiroshima Univ, Dept Diagnost Radiol, Minami Ku, 1-2-3 Kasumi, Hiroshima 7348551, Japan
[2] Canon Med Res USA, Vernon Hills, IL USA
[3] Canon Med Syst, Otawara, Tochigi, Japan
关键词
Phantoms; imaging; neural networks; X-ray computed tomography; machine learning; artificial intelligence; NOISE POWER SPECTRUM; ITERATIVE RECONSTRUCTION; COMPUTED-TOMOGRAPHY; REDUCTION; RESOLUTION; QUALITY;
D O I
10.1016/j.acra.2019.09.008
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives: Noise, commonly encountered on computed tomography (CT) images, can impact diagnostic accuracy. To reduce the image noise, we developed a deep-learning reconstruction (DLR) method that integrates deep convolutional neural networks into image reconstruction. In this phantom study, we compared the image noise characteristics, spatial resolution, and task-based detectability on DLR images and images reconstructed with other state-of-the art techniques. Methods: We scanned a phantom harboring cylindrical modules with different contrast on a 320-row detector CT scanner. Phantom images were reconstructed with filtered back projection, hybrid iterative reconstruction, model-based iterative reconstruction, and DLR. The standard deviation of the CT number and the noise power spectrum were calculated for noise characterization. The 10% modulation transfer function (MTF) level was used to evaluate spatial resolution; task-based detectability was assessed using the model observer method. Results: On images reconstructed with DLR, the noise was lower than on images subjected to other reconstructions, especially at low radiation dose settings. Noise power spectrum measurements also showed that the noise amplitude was lower, especially for low-frequency components, on DLR images. Based on the MTF, spatial resolution was higher on model-based iterative reconstruction image than DLR image, however, for lower-contrast objects, the MTF on DLR images was comparable to images reconstructed with other methods. The machine observer study showed that at reduced radiation-dose settings, DLR yielded the best detectability. Conclusion: On DLR images, the image noise was lower, and high-contrast spatial resolution and task-based detectability were better than on images reconstructed with other state-of-the art techniques. DLR also outperformed other methods with respect to task-based detectability.
引用
收藏
页码:82 / 87
页数:6
相关论文
共 50 条
  • [1] Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study
    Greffier, Joel
    Hamard, Aymeric
    Pereira, Fabricio
    Barrau, Corinne
    Pasquier, Hugo
    Beregi, Jean Paul
    Frandon, Julien
    EUROPEAN RADIOLOGY, 2020, 30 (07) : 3951 - 3959
  • [2] Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study
    Joël Greffier
    Aymeric Hamard
    Fabricio Pereira
    Corinne Barrau
    Hugo Pasquier
    Jean Paul Beregi
    Julien Frandon
    European Radiology, 2020, 30 : 3951 - 3959
  • [3] Comparison of two deep-learning image reconstruction algorithms on cardiac CT images: A phantom study
    Greffier, Joel
    Pastor, Maxime
    Si-Mohamed, Salim
    Goutain-Majorel, Cynthia
    Peudon-Balas, Aude
    Bensalah, Mourad Zoubir
    Frandon, Julien
    Beregi, Jean-Paul
    Dabli, Djamel
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2024, 105 (03) : 110 - 117
  • [4] Comparison of two versions of a deep learning image reconstruction algorithm on CT image quality and dose reduction: A phantom study
    Greffier, Joel
    Dabli, Djamel
    Frandon, Julien
    Hamard, Aymeric
    Belaouni, Asmaa
    Akessoul, Philippe
    Fuamba, Yannick
    Le Roy, Julien
    Guiu, Boris
    Beregi, Jean-Paul
    MEDICAL PHYSICS, 2021, 48 (10) : 5743 - 5755
  • [5] Improved image quality and dose reduction in abdominal CT with deep-learning reconstruction algorithm: a phantom study
    Joël Greffier
    Quentin Durand
    Julien Frandon
    Salim Si-Mohamed
    Maeliss Loisy
    Fabien de Oliveira
    Jean-Paul Beregi
    Djamel Dabli
    European Radiology, 2023, 33 : 699 - 710
  • [6] Improved image quality and dose reduction in abdominal CT with deep-learning reconstruction algorithm: a phantom study
    Greffier, Joel
    Durand, Quentin
    Frandon, Julien
    Si-Mohamed, Salim
    Loisy, Maeliss
    de Oliveira, Fabien
    Beregi, Jean-Paul
    Dabli, Djamel
    EUROPEAN RADIOLOGY, 2023, 33 (01) : 699 - 710
  • [7] Preserving image texture while reducing radiation dose with a deep learning image reconstruction algorithm in chest CT: A phantom study
    Franck, Caro
    Zhang, Guozhi
    Deak, Paul
    Zanca, Federica
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 81 : 86 - 93
  • [8] Performance evaluation of deep learning image reconstruction algorithm for dual-energy spectral CT imaging: A phantom study
    Li, Haoyan
    Li, Zhentao
    Gao, Shuaiyi
    Hu, Jiaqi
    Yang, Zhihao
    Peng, Yun
    Sun, Jihang
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2024, 32 (03) : 513 - 528
  • [9] Image quality improvement with deep learning-based reconstruction on abdominal ultrahigh-resolution CT: A phantom study
    Shirasaka, Takashi
    Kojima, Tsukasa
    Funama, Yoshinori
    Sakai, Yuki
    Kondo, Masatoshi
    Mikayama, Ryoji
    Hamasaki, Hiroshi
    Kato, Toyoyuki
    Ushijima, Yasuhiro
    Asayama, Yoshiki
    Nishie, Akihiro
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2021, 22 (07): : 286 - 296
  • [10] CT iterative reconstruction in image space: A phantom study
    Ghetti, C.
    Ortenzia, O.
    Serreli, G.
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2012, 28 (02): : 161 - 165