Dose reduction potential of vendor-agnostic deep learning model in comparison with deep learning–based image reconstruction algorithm on CT: a phantom study

被引:0
|
作者
Hyunsu Choi
Won Chang
Jong Hyo Kim
Chulkyun Ahn
Heejin Lee
Hae Young Kim
Jungheum Cho
Yoon Jin Lee
Young Hoon Kim
机构
[1] Seoul National University Bundang Hospital,Department of Radiology
[2] Seoul National University College of Medicine,Department of Radiology
[3] and Institute of Radiation Medicine,Department of Transdisciplinary Studies, Program in Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology
[4] Seoul National University Medical Research Center,Department of Applied bioengineering, Graduate School of Convergence Science and Technology
[5] Seoul National University,undefined
[6] Seoul National University,undefined
来源
European Radiology | 2022年 / 32卷
关键词
Deep learning; Tomography, x-ray computed; Phantoms, imaging; Radiation dosage; Artificial intelligence;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1247 / 1255
页数:8
相关论文
共 50 条
  • [31] Contribution of an artificial intelligence deep-learning reconstruction algorithm for dose optimization in lumbar spine CT examination: A phantom study
    Greffier, Joel
    Frandon, Julien
    Durand, Quentin
    Kammoun, Tarek
    Loisy, Maeliss
    Beregi, Jean -Paul
    Dabli, Djamel
    [J]. DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2023, 104 (02) : 76 - 83
  • [32] Low-dose liver CT: image quality and diagnostic accuracy of deep learning image reconstruction algorithm
    Caruso, Damiano
    De Santis, Domenico
    Del Gaudio, Antonella
    Guido, Gisella
    Zerunian, Marta
    Polici, Michela
    Valanzuolo, Daniela
    Pugliese, Dominga
    Persechino, Raffaello
    Cremona, Antonio
    Barbato, Luca
    Caloisi, Andrea
    Iannicelli, Elsa
    Laghi, Andrea
    [J]. EUROPEAN RADIOLOGY, 2024, 34 (04) : 2384 - 2393
  • [33] The influence of a deep learning image reconstruction algorithm on the image quality and auto-analysis of pulmonary nodules at ultra-low dose chest CT: a phantom study
    Yao, Yue
    Guo, Baobin
    Li, Jianying
    Yang, Quanxin
    Li, Xiaohui
    Deng, Lei
    [J]. QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2022, 12 (05) : 2777 - 2791
  • [34] Image Super Resolution Reconstruction Algorithm Based on Deep Learning
    Dou, Huijing
    Zhang, Wenqian
    Liang, Xiao
    [J]. 2019 2ND IEEE INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SIGNAL PROCESSING (ICICSP), 2019, : 306 - 310
  • [35] Low-dose liver CT: image quality and diagnostic accuracy of deep learning image reconstruction algorithm
    Damiano Caruso
    Domenico De Santis
    Antonella Del Gaudio
    Gisella Guido
    Marta Zerunian
    Michela Polici
    Daniela Valanzuolo
    Dominga Pugliese
    Raffaello Persechino
    Antonio Cremona
    Luca Barbato
    Andrea Caloisi
    Elsa Iannicelli
    Andrea Laghi
    [J]. European Radiology, 2024, 34 : 2384 - 2393
  • [36] Task-based characterization of a deep learning image reconstruction and comparison with filtered back-projection and a partial model-based iterative reconstruction in abdominal CT: A phantom study
    Racine, Damien
    Becce, Fabio
    Viry, Anais
    Monnin, Pascal
    Thomsen, Brian
    Verdun, Francis R.
    Rotzinger, David C.
    [J]. PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2020, 76 : 28 - 37
  • [37] Image quality improvement with deep learning-based reconstruction on abdominal ultrahigh-resolution CT: A phantom study
    Shirasaka, Takashi
    Kojima, Tsukasa
    Funama, Yoshinori
    Sakai, Yuki
    Kondo, Masatoshi
    Mikayama, Ryoji
    Hamasaki, Hiroshi
    Kato, Toyoyuki
    Ushijima, Yasuhiro
    Asayama, Yoshiki
    Nishie, Akihiro
    [J]. JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2021, 22 (07): : 286 - 296
  • [38] Low-dose CT urography using deep learning image reconstruction: a prospective study for comparison with conventional CT urography
    Cheng, Yannan
    Han, Yangyang
    Li, Jianying
    Fan, Ganglian
    Cao, Le
    Li, Junjun
    Jia, Xiaoqian
    Yang, Jian
    Guo, Jianxin
    [J]. BRITISH JOURNAL OF RADIOLOGY, 2021, 94 (1120):
  • [39] Deep Learning Vs. Iterative Reconstruction in CT Dose Reduction and Image Texture Preservation:A Live Animal Study
    Zhang, J.
    Raslau, F.
    Ganesh, H.
    Escott, E.
    Zhang, J.
    [J]. MEDICAL PHYSICS, 2021, 48 (06)
  • [40] Casting CT image segmentation algorithm based on deep learning
    Zhao E.
    He Y.
    Shen K.
    Liu J.
    Duan L.
    [J]. Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2023, 44 (11): : 176 - 184