Recovering the temperature distribution for multi-term time-fractional sideways diffusion equations

被引:0
|
作者
Khieu, Tran Thi [1 ,2 ]
机构
[1] Univ Sci, Fac Math & Comp Sci, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2024年 / 43卷 / 04期
关键词
Multi-term time-fractional diffusion equation; Distributed order time-fractional diffusion equation; Sideways problem; Ill-posed problem; Filter regularization; H & ouml; lder convergence rate; SURFACE HEAT-FLUX; REGULARIZATION; WAVELET;
D O I
10.1007/s40314-023-02546-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the current paper, an inverse boundary value problem so-called the sideways problem for the multi-term time-fractional diffusion equation is investigated. The problem of interest includes the recovering of the diffusion distribution from the boundary data. We prove that the problem is ill-posed as the solution does not continuously depend on the boundary data. We further propose a fractional filter method to regularize the problem. The stability and convergence of the proposed method are gingerly analyzed. Two numerical examples, with the support from the fast Fourier transform (FFT), are implemented to illustrate the theoretical results. The numerical results are consistent with the theoretical analysis.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Y. S. Li
    L. L. Sun
    Z. Q. Zhang
    T. Wei
    [J]. Numerical Algorithms, 2019, 82 : 1279 - 1301
  • [22] A STRONG POSITIVITY PROPERTY AND A RELATED INVERSE SOURCE PROBLEM FOR MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATIONS
    胡利
    李志远
    杨晓娜
    [J]. Acta Mathematica Scientia., 2024, 44 (05) - 2040
  • [23] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Li, Y. S.
    Sun, L. L.
    Zhang, Z. Q.
    Wei, T.
    [J]. NUMERICAL ALGORITHMS, 2019, 82 (04) : 1279 - 1301
  • [24] A strong positivity property and a related inverse source problem for multi-term time-fractional diffusion equations
    Hu, Li
    Li, Zhiyuan
    Yang, Xiaona
    [J]. ACTA MATHEMATICA SCIENTIA, 2024, 44 (05) : 2019 - 2040
  • [25] Efficient numerical method for multi-term time-fractional diffusion equations with Caputo-Fabrizio derivatives
    Fan, Bin
    [J]. AIMS MATHEMATICS, 2024, 9 (03): : 7293 - 7320
  • [26] A higher order unconditionally stable numerical technique for multi-term time-fractional diffusion and advection-diffusion equations
    Choudhary, Renu
    Singh, Satpal
    Kumar, Devendra
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (05):
  • [27] Classical unique continuation property for multi-term time-fractional evolution equations
    Lin, Ching-Lung
    Nakamura, Gen
    [J]. MATHEMATISCHE ANNALEN, 2023, 385 (1-2) : 551 - 574
  • [28] Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem
    Huang, Chaobao
    Stynes, Martin
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (01)
  • [29] OPTIMAL INITIAL VALUE CONTROL FOR THE MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATION
    Veklych, R. A.
    Semenov, V. V.
    Lyashko, S. I.
    [J]. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2016, (06): : 100 - 103
  • [30] An α-robust finite element method for a multi-term time-fractional diffusion problem
    Huang, Chaobao
    Stynes, Martin
    Chen, Hu
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 389