A higher order unconditionally stable numerical technique for multi-term time-fractional diffusion and advection-diffusion equations

被引:0
|
作者
Choudhary, Renu [1 ]
Singh, Satpal [1 ,2 ]
Kumar, Devendra [1 ]
机构
[1] Birla Inst Technol & Sci, Dept Math, Pilani 333031, Rajasthan, India
[2] SR Univ, Sch Comp Sci & Artificial Intelligence, Warangal 506371, Telangana, India
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2024年 / 43卷 / 05期
关键词
Caputo derivative; Stability; Convergence; Trigonometric splines; SPECTRAL METHOD;
D O I
10.1007/s40314-024-02688-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Constructing a higher order collocation framework for solving the Caputo multi-term time-fractional advection-diffusion and diffusion-type problems is the primary objective of this work, which has influenced the field of scientific disciplines. Advection-diffusion and reaction-diffusion equations were developed by modeling scientific phenomena in fluid flow issues, solid oxide fuel cells, and solvent diffusion into heavy oils. As a result, numerical solutions to these problems have garnered significant attention. The L1-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L1-2$$\end{document} approximation approach approximates the fractional derivatives of orders eta,eta i is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upeta ,\, \upeta _i \in (0,1)$$\end{document} that are present in the considered problem. This approach provides a higher accuracy of O(k3-max{eta,eta i})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(k<^>{3-\max \{\upeta ,\upeta _i\}})$$\end{document} in time direction. Fourth-order convergence in space is achieved by employing a spline collocation technique with trigonometric quintic splines. Results from applying the suggested computational approach to four test examples have demonstrated its superiority and validity.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Investigation and analysis of the numerical approach to solve the multi-term time-fractional advection-diffusion model
    Aghdam, Yones Esmaeelzade
    Mesgarani, Hamid
    Asadi, Zeinab
    Nguyen, Van Thinh
    [J]. AIMS MATHEMATICS, 2023, 8 (12): : 29474 - 29489
  • [2] Numerical methods and analysis for a multi-term time-space variable-order fractional advection-diffusion equations and applications
    Chen, Ruige
    Liu, Fawang
    Vo Anh
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 352 : 437 - 452
  • [3] Numerical treatment for after-effected multi-term time-space fractional advection-diffusion equations
    Hendy, Ahmed S.
    [J]. ENGINEERING WITH COMPUTERS, 2021, 37 (04) : 2763 - 2773
  • [4] A High Accuracy Numerical Method Based on Interpolation Technique for Time-Fractional Advection-Diffusion Equations
    Chen, Yan
    Zhang, Xindong
    [J]. JOURNAL OF MATHEMATICS, 2024, 2024
  • [5] A high-order unconditionally stable numerical method for a class of multi-term time-fractional diffusion equation arising in the solute transport models
    Alam, Mohammad Prawesh
    Khan, Arshad
    Baleanu, Dumitru
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (01) : 105 - 132
  • [6] A high-order spectral method for the multi-term time-fractional diffusion equations
    Zheng, M.
    Liu, F.
    Anh, V.
    Turner, I.
    [J]. APPLIED MATHEMATICAL MODELLING, 2016, 40 (7-8) : 4970 - 4985
  • [7] Numerical methods for the two-dimensional multi-term time-fractional diffusion equations
    Zhao, Linlin
    Liu, Fawang
    Anh, Vo V.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (10) : 2253 - 2268
  • [8] STOCHASTIC MODEL FOR MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATIONS WITH NOISE
    Hosseini, Vahid Reza
    Remazani, Mohamad
    Zou, Wennan
    Banihashemi, Seddigheh
    [J]. THERMAL SCIENCE, 2021, 25 (SpecialIssue 2): : S287 - S293
  • [9] On solutions of time-fractional advection-diffusion equation
    Attia, Nourhane
    Akgul, Ali
    Seba, Djamila
    Nour, Abdelkader
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (06) : 4489 - 4516
  • [10] Analytical solutions for the multi-term time-space fractional advection-diffusion equations with mixed boundary conditions
    Ding, Xiao-Li
    Jiang, Yao-Lin
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (02) : 1026 - 1033