Linearized Conservative Finite Element Methods for the Nernst–Planck–Poisson Equations

被引:2
|
作者
Huadong Gao
Dongdong He
机构
[1] Huazhong University of Science and Technology,School of Mathematics and Statistics
[2] Tongji University,School of Aerospace Engineering and Applied Mechanics
来源
关键词
Nernst–Planck–Poisson equations; Finite element methods; Unconditional convergence; Optimal error estimate; Conservative schemes; 65N12; 65N30; 35K61;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to present and study new linearized conservative schemes with finite element approximations for the Nernst–Planck–Poisson equations. For the linearized backward Euler FEM, an optimal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} error estimate is provided almost unconditionally (i.e., when the mesh size h and time step τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} are less than a small constant). Global mass conservation and electric energy decay of the schemes are also proved. Extension to second-order time discretizations is given. Numerical results in both two- and three-dimensional spaces are provided to confirm our theoretical analysis and show the optimal convergence, unconditional stability, global mass conservation and electric energy decay properties of the proposed schemes.
引用
收藏
页码:1269 / 1289
页数:20
相关论文
共 50 条
  • [31] Sensitivity analysis of the Poisson Nernst-Planck equations: a finite element approximation for the sensitive analysis of an electrodiffusion model
    Dione, Ibrahima
    Doyon, Nicolas
    Deteix, Jean
    JOURNAL OF MATHEMATICAL BIOLOGY, 2019, 78 (1-2) : 21 - 56
  • [32] High-order space-time finite element methods for the Poisson-Nernst-Planck equations: Positivity and unconditional energy stability?
    Fu, Guosheng
    Xu, Zhiliang
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 395
  • [33] Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: Finite element solutions
    Lu, Benzhuo
    Holst, Michael J.
    McCammon, J. Andrew
    Zhou, Y. C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (19) : 6979 - 6994
  • [34] A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore
    Chaudhry, Jehanzeb Hameed
    Comer, Jeffrey
    Aksimentiev, Aleksei
    Olson, Luke N.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2014, 15 (01) : 93 - 125
  • [35] A stabilized finite element method for the Poisson-Nernst-Planck equations in three-dimensional ion channel simulations
    Wang, Qin
    Li, Hongliang
    Zhang, Linbo
    Lu, Benzhuo
    APPLIED MATHEMATICS LETTERS, 2021, 111 (111)
  • [36] CONVERGENT FINITE ELEMENT DISCRETIZATIONS OF THE NAVIER-STOKES-NERNST-PLANCK-POISSON SYSTEM
    Prohl, Andreas
    Schmuck, Markus
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (03): : 531 - 571
  • [37] Error Analysis of Mixed Finite Element Method for Poisson-Nernst-Planck System
    He, Mingyan
    Sun, Pengtao
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (06) : 1924 - 1948
  • [38] Entropy method for generalized Poisson–Nernst–Planck equations
    José Rodrigo González Granada
    Victor A. Kovtunenko
    Analysis and Mathematical Physics, 2018, 8 : 603 - 619
  • [39] FINITE DOMAIN EFFECTS IN STEADY STATE SOLUTIONS OF POISSON-NERNST-PLANCK EQUATIONS
    Elad, Doron
    Gavish, Nir
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2019, 79 (03) : 1030 - 1050
  • [40] A multigrid method for the Poisson-Nernst-Planck equations
    Mathur, Sanjay R.
    Murthy, Jayathi Y.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (17-18) : 4031 - 4039