Error Analysis of Mixed Finite Element Method for Poisson-Nernst-Planck System

被引:12
|
作者
He, Mingyan [1 ]
Sun, Pengtao [2 ]
机构
[1] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310018, Zhejiang, Peoples R China
[2] Univ Nevada, Dept Math Sci, Maryland Pkwy, Las Vegas, NV 89154 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Poisson-Nernst-Planck system; mixed finite element method; Taylor-Hood element; semidis-cretization; full discretization; the optimal error estimate; LAGRANGIAN-MULTIPLIERS; CARRIER TRANSPORT; STOKES EQUATIONS; BASIC EQUATIONS; VOLUME METHOD; POROUS-MEDIA; APPROXIMATION; EXISTENCE; SEMICONDUCTORS; PERTURBATION;
D O I
10.1002/num.22170
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To improve the convergence rate in L-2 norm from suboptimal to optimal for both electrostatic potential and ionic concentrations in Poisson-Nernst-Planck (PNP) system, we propose the mixed finite element method in this article to discretize the electrostatic potential equation, and still use the standard finite element method to discretize the time-dependent ionic concentrations equations. Optimal error estimates in L-infinity ([0, T]; L-2) norm for the electrostatic potential, and in L-infinity ([0, T]; L-2) and L-infinity ([0, T]; H-1) norms for the ionic concentrations are attained. As a by-product, the electric field can also achieve a higher approximation order in contrast with the standard finite element method for PNP system. Numerical experiments are performed to validate the theoretical results. (c) 2017 Wiley Periodicals, Inc.
引用
收藏
页码:1924 / 1948
页数:25
相关论文
共 50 条