Sensitivity analysis of the Poisson Nernst-Planck equations: a finite element approximation for the sensitive analysis of an electrodiffusion model

被引:1
|
作者
Dione, Ibrahima [1 ]
Doyon, Nicolas [1 ]
Deteix, Jean [1 ]
机构
[1] Univ Laval, GIREF, Dept Math & Stat, Pavillon Vachon,1045 Ave Med, Quebec City, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Electrodiffusion; Finite elements; Ionic concentrations; Node of Ranvier; Sensitivity equation method; AUTOMATIC DIFFERENTIATION; DIELECTRIC-CONSTANT; TIME BEHAVIOR; EXISTENCE; SYSTEMS;
D O I
10.1007/s00285-018-1266-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biological structures exhibiting electric potential fluctuations such as neuron and neural structures with complex geometries are modelled using an electrodiffusion or Poisson Nernst-Planck system of equations. These structures typically depend upon several parameters displaying a large degree of variation or that cannot be precisely inferred experimentally. It is crucial to understand how the mathematical model (and resulting simulations) depend on specific values of these parameters. Here we develop a rigorous approach based on the sensitivity equation for the electrodiffusion model. To illustrate the proposed methodology, we investigate the sensitivity of the electrical response of a node of Ranvier with respect to ionic diffusion coefficients and the membrane dielectric permittivity.
引用
收藏
页码:21 / 56
页数:36
相关论文
共 50 条
  • [1] Sensitivity analysis of the Poisson Nernst–Planck equations: a finite element approximation for the sensitive analysis of an electrodiffusion model
    Ibrahima Dione
    Nicolas Doyon
    Jean Deteix
    Journal of Mathematical Biology, 2019, 78 : 21 - 56
  • [2] NUMERICAL-SOLUTIONS OF THE NERNST-PLANCK AND POISSON SYSTEM OF EQUATIONS FOR ELECTRODIFFUSION
    RIVEROS, OJ
    CROXTON, TL
    ARMSTRONG, WM
    BIOPHYSICAL JOURNAL, 1988, 53 (02) : A402 - A402
  • [3] Numerical Aspects of Electrodiffusion Problem Based on Nernst-Planck and Poisson Equations
    Fausek, Janusz
    Szyszkiewicz, Krzysztof
    Filipek, R.
    DIFFUSION IN MATERIALS - DIMAT 2011, 2012, 323-325 : 81 - 86
  • [4] Computer simulations of electrodiffusion problems based on Nernst-Planck and Poisson equations
    Jasielec, J. J.
    Filipek, R.
    Szyszkiewicz, K.
    Fausek, J.
    Danielewski, M.
    Lewenstam, A.
    COMPUTATIONAL MATERIALS SCIENCE, 2012, 63 : 75 - 90
  • [5] An Error Analysis for the Finite Element Approximation to the Steady-State Poisson-Nernst-Planck Equations
    Yang, Ying
    Lu, Benzhuo
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2013, 5 (01) : 113 - 130
  • [6] Superconvergence analysis of finite element method for Poisson-Nernst-Planck equations
    Shi, Dongyang
    Yang, Huaijun
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (03) : 1206 - 1223
  • [7] Error analysis of finite element method for Poisson-Nernst-Planck equations
    Sun, Yuzhou
    Sun, Pengtao
    Zheng, Bin
    Lin, Guang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 301 : 28 - 43
  • [8] Adaptive finite element approximation for steady-state Poisson-Nernst-Planck equations
    Tingting Hao
    Manman Ma
    Xuejun Xu
    Advances in Computational Mathematics, 2022, 48
  • [9] Adaptive finite element approximation for steady-state Poisson-Nernst-Planck equations
    Hao, Tingting
    Ma, Manman
    Xu, Xuejun
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (04)
  • [10] Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model
    Schuss, Z
    Nadler, B
    Eisenberg, RS
    PHYSICAL REVIEW E, 2001, 64 (03): : 14