Sensitivity analysis of the Poisson Nernst-Planck equations: a finite element approximation for the sensitive analysis of an electrodiffusion model

被引:1
|
作者
Dione, Ibrahima [1 ]
Doyon, Nicolas [1 ]
Deteix, Jean [1 ]
机构
[1] Univ Laval, GIREF, Dept Math & Stat, Pavillon Vachon,1045 Ave Med, Quebec City, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Electrodiffusion; Finite elements; Ionic concentrations; Node of Ranvier; Sensitivity equation method; AUTOMATIC DIFFERENTIATION; DIELECTRIC-CONSTANT; TIME BEHAVIOR; EXISTENCE; SYSTEMS;
D O I
10.1007/s00285-018-1266-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biological structures exhibiting electric potential fluctuations such as neuron and neural structures with complex geometries are modelled using an electrodiffusion or Poisson Nernst-Planck system of equations. These structures typically depend upon several parameters displaying a large degree of variation or that cannot be precisely inferred experimentally. It is crucial to understand how the mathematical model (and resulting simulations) depend on specific values of these parameters. Here we develop a rigorous approach based on the sensitivity equation for the electrodiffusion model. To illustrate the proposed methodology, we investigate the sensitivity of the electrical response of a node of Ranvier with respect to ionic diffusion coefficients and the membrane dielectric permittivity.
引用
收藏
页码:21 / 56
页数:36
相关论文
共 50 条
  • [41] Mixed Finite Element Method for Modified Poisson-Nernst-Planck/Navier-Stokes Equations
    He, Mingyan
    Sun, Pengtao
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (03)
  • [42] A weak Galerkin finite element method for time-dependent Poisson-Nernst-Planck equations
    Ji, Guanghua
    Zhu, Wanwan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 416
  • [43] Primal-mixed finite element methods for the coupled Biot and Poisson-Nernst-Planck equations
    Gatica, Gabriel N.
    Inzunza, Cristian
    Ruiz-Baier, Ricardo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 186 : 53 - 83
  • [44] Discontinuous bubble immersed finite element method for Poisson-Boltzmann-Nernst-Planck model
    Kwon, In
    Kwak, Do Y.
    Jo, Gwanghyun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 438
  • [45] IONIC TRANSPORT AND SPACE-CHARGE DENSITY IN ELECTROLYTIC SOLUTIONS AS DESCRIBED BY NERNST-PLANCK AND POISSON EQUATIONS
    MAFE, S
    PELLICER, J
    AGUILELLA, VM
    JOURNAL OF PHYSICAL CHEMISTRY, 1986, 90 (22): : 6045 - 6050
  • [46] Numerical solution of the coupled Nernst-Planck and Poisson equations for liquid junction and ion selective membrane potentials
    Sokalski, T
    Lingenfelter, P
    Lewenstam, A
    JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (11): : 2443 - 2452
  • [47] A structure-preserving finite element discretization for the time-dependent Nernst-Planck equation
    Qianru Zhang
    Bin Tu
    Qiaojun Fang
    Benzhuo Lu
    Journal of Applied Mathematics and Computing, 2022, 68 : 1545 - 1564
  • [48] A structure-preserving finite element discretization for the time-dependent Nernst-Planck equation
    Zhang, Qianru
    Tu, Bin
    Fang, Qiaojun
    Lu, Benzhuo
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (03) : 1545 - 1564
  • [49] New mixed finite element methods for the coupled Stokes and Poisson-Nernst-Planck equations in Banach spaces
    Correa, Claudio I.
    Gatica, Gabriel N.
    Ruiz-Baier, Ricardo
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (03) : 1511 - 1551
  • [50] INTERPRETATION OF MEMBRANE CURRENT-VOLTAGE RELATIONS - NERNST-PLANCK ANALYSIS
    ATTWELL, D
    JACK, J
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1978, 34 (02): : 81 - 107