Sensitivity analysis of the Poisson Nernst-Planck equations: a finite element approximation for the sensitive analysis of an electrodiffusion model

被引:1
|
作者
Dione, Ibrahima [1 ]
Doyon, Nicolas [1 ]
Deteix, Jean [1 ]
机构
[1] Univ Laval, GIREF, Dept Math & Stat, Pavillon Vachon,1045 Ave Med, Quebec City, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Electrodiffusion; Finite elements; Ionic concentrations; Node of Ranvier; Sensitivity equation method; AUTOMATIC DIFFERENTIATION; DIELECTRIC-CONSTANT; TIME BEHAVIOR; EXISTENCE; SYSTEMS;
D O I
10.1007/s00285-018-1266-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biological structures exhibiting electric potential fluctuations such as neuron and neural structures with complex geometries are modelled using an electrodiffusion or Poisson Nernst-Planck system of equations. These structures typically depend upon several parameters displaying a large degree of variation or that cannot be precisely inferred experimentally. It is crucial to understand how the mathematical model (and resulting simulations) depend on specific values of these parameters. Here we develop a rigorous approach based on the sensitivity equation for the electrodiffusion model. To illustrate the proposed methodology, we investigate the sensitivity of the electrical response of a node of Ranvier with respect to ionic diffusion coefficients and the membrane dielectric permittivity.
引用
收藏
页码:21 / 56
页数:36
相关论文
共 50 条
  • [31] Correction to: A Linearized Local Conservative Mixed Finite Element Method for Poisson–Nernst–Planck Equations
    Huadong Gao
    Pengtao Sun
    Journal of Scientific Computing, 2018, 77 : 818 - 818
  • [32] Modeling of electrokinetic processes by finite element integration of the Nernst-Planck-Poisson system of equations
    Paz-Garcia, Juan Manuel
    Johannesson, Bjorn
    Ottosen, Lisbeth M.
    Ribeiro, Alexandra B.
    Miguel Rodriguez-Maroto, Jose
    SEPARATION AND PURIFICATION TECHNOLOGY, 2011, 79 (02) : 183 - 192
  • [33] Superconvergent estimate of a Galerkin finite element method for nonlinear Poisson-Nernst-Planck equations
    Shi, Xiangyu
    Lu, Linzhang
    APPLIED MATHEMATICS LETTERS, 2020, 104
  • [34] ERROR ANALYSIS OF VIRTUAL ELEMENT METHODS FOR THE TIME-DEPENDENT POISSON-NERNST-PLANCK EQUATIONS
    Yang, Ying
    Liu, Ya
    Liu, Yang
    Shu, Shi
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2025, 43 (03): : 731 - 770
  • [35] LIQUID JUNCTION POTENTIALS CALCULATED FROM NUMERICAL-SOLUTIONS OF THE NERNST-PLANCK AND POISSON EQUATIONS
    RIVEROS, OJ
    CROXTON, TL
    ARMSTRONG, WM
    JOURNAL OF THEORETICAL BIOLOGY, 1989, 140 (02) : 221 - 230
  • [36] A 3-D finite element Poisson-Nernst-Planck model for the analysis of ion transport across ionic channels
    Coco, Salvatore
    Gazzo, Daniela
    Laudani, Antonino
    Pollicino, Giuseppe
    IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (04) : 1461 - 1464
  • [37] Numerical solution of the coupled Nernst-Planck and poisson equations for ion-selective membrane potentials
    Lingenfelter, P
    Sokalski, T
    Lewenstam, A
    MEMBRANES-PREPARATION, PROPERTIES AND APPLICATIONS, 2003, 752 : 193 - 198
  • [38] A conservative finite difference scheme for Poisson-Nernst-Planck equations
    Flavell, Allen
    Machen, Michael
    Eisenberg, Bob
    Kabre, Julienne
    Liu, Chun
    Li, Xiaofan
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (01) : 235 - 249
  • [39] A lignins based MHD hybrid nanofluid flow analysis by using an ionic Poisson-Boltzmann and Nernst-Planck equations in a wavy channel
    Sakinder, S.
    Salahuddin, T.
    AIN SHAMS ENGINEERING JOURNAL, 2023, 14 (05)
  • [40] A weak Galerkin finite element method for time-dependent Poisson-Nernst-Planck equations
    Ji, Guanghua
    Zhu, Wanwan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 416