Fractional Calculus on Fractal Interpolation for a Sequence of Data with Countable Iterated Function System

被引:0
|
作者
A. Gowrisankar
R. Uthayakumar
机构
[1] The Gandhigram Rural Institute,Department of Mathematics
[2] Deemed University,undefined
来源
关键词
Attractor; countable iterated function system; fractal interpolation function; fractional calculus; 28A80; 26A33; 41A05;
D O I
暂无
中图分类号
学科分类号
摘要
In recent years, the concept of fractal analysis is the best nonlinear tool towards understanding the complexities in nature. Especially, fractal interpolation has flexibility for approximation of nonlinear data obtained from the engineering and scientific experiments. Random fractals and attractors of some iterated function systems are more appropriate examples of the continuous everywhere and nowhere differentiable (highly irregular) functions, hence fractional calculus is a mathematical operator which best suits for analyzing such a function. The present study deals the existence of fractal interpolation function (FIF) for a sequence of data {(xn,yn):n≥2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{(x_n,y_n):n\geq 2\}}$$\end{document} with countable iterated function system, where xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x_n}$$\end{document} is a monotone and bounded sequence, yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${y_n}$$\end{document} is a bounded sequence. The integer order integral of FIF for sequence of data is revealed if the value of the integral is known at the initial endpoint or final endpoint. Besides, Riemann–Liouville fractional calculus of fractal interpolation function had been investigated with numerical examples for analyzing the results.
引用
收藏
页码:3887 / 3906
页数:19
相关论文
共 50 条
  • [41] ANALYSIS ON WEYL-MARCHAUD FRACTIONAL DERIVATIVE FOR TYPES OF FRACTAL INTERPOLATION FUNCTION WITH FRACTAL DIMENSION
    Priyanka, T. M. C.
    Gowrisankar, A.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (07)
  • [42] Riemann-Liouville calculus on quadratic fractal interpolation function with variable scaling factors
    Gowrisankar, A.
    Prasad, M. Guru Prem
    JOURNAL OF ANALYSIS, 2019, 27 (02): : 347 - 363
  • [43] On the code space and Hutchinson measure for countable iterated function system consisting of cyclic φ-contractions
    Medhi, R.
    Viswanathan, P.
    CHAOS SOLITONS & FRACTALS, 2023, 167
  • [44] Time Series Data Analysis Using Fractional Calculus Concepts and Fractal Analysis
    Repperger, D. W.
    Farris, K. A.
    Barton, C. C.
    Tebbens, S.
    2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 3311 - +
  • [45] LINEAR FRACTAL INTERPOLATION FUNCTION FOR DATA SET WITH RANDOM NOISE
    Kumar, Mohit
    Upadhye, Neelesh S.
    Chand, A. K. B.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (09)
  • [46] Weyl–Marchaud fractional derivative of a vector valued fractal interpolation function with function contractivity factors
    T. M. C. Priyanka
    A. Agathiyan
    A. Gowrisankar
    The Journal of Analysis, 2023, 31 : 657 - 689
  • [47] Partial iterated function system-based fractal image coding
    South China Univ. of Technology, Guangzhou, China
    Proc SPIE Int Soc Opt Eng, (42-49):
  • [48] The Programming of Snow Flower Fractal Graphics Based on Iterated Function System
    You, Fucheng
    Chen, Yujie
    ELECTRICAL INFORMATION AND MECHATRONICS AND APPLICATIONS, PTS 1 AND 2, 2012, 143-144 : 765 - 769
  • [49] Application Study of Fractal Figures Based on Iterated Function System Algorithm
    Xiao, Hairong
    MANUFACTURING PROCESS AND EQUIPMENT, PTS 1-4, 2013, 694-697 : 2886 - 2890
  • [50] Riemann–Liouville fractional integral of non-affine fractal interpolation function and its fractional operator
    T. M. C. Priyanka
    A. Gowrisankar
    The European Physical Journal Special Topics, 2021, 230 : 3789 - 3805