ANALYSIS ON WEYL-MARCHAUD FRACTIONAL DERIVATIVE FOR TYPES OF FRACTAL INTERPOLATION FUNCTION WITH FRACTAL DIMENSION

被引:22
|
作者
Priyanka, T. M. C. [1 ]
Gowrisankar, A. [1 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
关键词
Fractal Interpolation Function; Iterated Rinction System; Fractal Dimension; Weyl-Marchaud Fractional Derivative; CALCULUS;
D O I
10.1142/S0218348X21502157
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the Weyl-Marchaud fractional derivative of various fractal interpolation functions (FIFs) like linear FIF, quadratic FIF, hidden variable FIF and alpha-FIF is investigated. Further, the fractal dimension of the quadratic FIF is estimated and it is compared with the order of the weyl Marchaud fractional derivative. Besides, this paper shows that the Weyl Marchaud fractional derivative of all FIFs is again FIFs if the order of the fractional derivative meets the necessary condition.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] BOX DIMENSION OF WEYL-MARCHAUD FRACTIONAL DERIVATIVE OF LINEAR FRACTAL INTERPOLATION FUNCTIONS
    Peng, Wen Liang
    Yao, Kui
    Zhang, Xia
    Yao, Jia
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (04)
  • [2] Weyl-Marchaud fractional derivative of a vector valued fractal interpolation function with function contractivity factors
    Priyanka, T. M. C.
    Agathiyan, A.
    Gowrisankar, A.
    [J]. JOURNAL OF ANALYSIS, 2023, 31 (01): : 657 - 689
  • [3] The fractal dimensions of graphs of the Weierstrass function with the Weyl-Marchaud fractional derivative
    Liang, Yongshun
    Yao, Kui
    Xiao, Wei
    [J]. ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [4] On the variable order Weyl-Marchaud fractional derivative of non-affine fractal function
    Chinnathambi, Kavitha
    Gowrisankar, A.
    [J]. JOURNAL OF ANALYSIS, 2024, 32 (01): : 3 - 18
  • [5] On the variable order Weyl-Marchaud fractional derivative of non-affine fractal function
    Kavitha Chinnathambi
    A. Gowrisankar
    [J]. The Journal of Analysis, 2024, 32 : 3 - 18
  • [6] The fractal dimensions of graphs of the Weyl-Marchaud fractional derivative of the Weierstrass-type function
    Yao, K.
    Liang, Y. S.
    Fang, J. X.
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 35 (01) : 106 - 115
  • [7] A new method on Box dimension of Weyl-Marchaud fractional derivative of Weierstrass function
    Yao, Kui
    Chen, Haotian
    Peng, W. L.
    Wang, Zekun
    Yao, Jia
    Wu, Yipeng
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 142
  • [8] Weyl–Marchaud fractional derivative of a vector valued fractal interpolation function with function contractivity factors
    T. M. C. Priyanka
    A. Agathiyan
    A. Gowrisankar
    [J]. The Journal of Analysis, 2023, 31 : 657 - 689
  • [9] FRACTAL DIMENSIONS OF WEYL-MARCHAUD FRACTIONAL DERIVATIVE OF CERTAIN ONE-DIMENSIONAL FUNCTIONS
    Liang, Y. S.
    Liu, N.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (07)
  • [10] ON THE BOX DIMENSION OF WEYL-MARCHAUD FRACTIONAL DERIVATIVE AND LINEARITY EFFECT
    Chandra, Subhash
    Abbas, Syed
    Liang, Yongshun
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (05)