On the variable order Weyl-Marchaud fractional derivative of non-affine fractal function

被引:4
|
作者
Chinnathambi, Kavitha [1 ]
Gowrisankar, A. [1 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
来源
JOURNAL OF ANALYSIS | 2024年 / 32卷 / 01期
关键词
Iterated function system; Fractal interpolation function; Weyl-Marchaud fractional derivative; INTERPOLATION; CALCULUS;
D O I
10.1007/s41478-023-00566-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The fractal technique is applied to study a wide variety of phenomena in the universe. In particular, fractal techniques can be generalized through traditional approaches to spatial interpolation. This article demonstrates the Weyl-Marchaud fractional derivative of variable order 0 < zeta(z) <1 of non-affine fractal function with variable scaling factor and base functions. Moreover, the significance of variable scaling factor in the flexibility of fractal function and their variable order Weyl-Marchaud fractional derivatives is presented with numerical simulations.
引用
收藏
页码:3 / 18
页数:16
相关论文
共 50 条