Fractional Calculus on Fractal Interpolation for a Sequence of Data with Countable Iterated Function System

被引:0
|
作者
A. Gowrisankar
R. Uthayakumar
机构
[1] The Gandhigram Rural Institute,Department of Mathematics
[2] Deemed University,undefined
来源
关键词
Attractor; countable iterated function system; fractal interpolation function; fractional calculus; 28A80; 26A33; 41A05;
D O I
暂无
中图分类号
学科分类号
摘要
In recent years, the concept of fractal analysis is the best nonlinear tool towards understanding the complexities in nature. Especially, fractal interpolation has flexibility for approximation of nonlinear data obtained from the engineering and scientific experiments. Random fractals and attractors of some iterated function systems are more appropriate examples of the continuous everywhere and nowhere differentiable (highly irregular) functions, hence fractional calculus is a mathematical operator which best suits for analyzing such a function. The present study deals the existence of fractal interpolation function (FIF) for a sequence of data {(xn,yn):n≥2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{(x_n,y_n):n\geq 2\}}$$\end{document} with countable iterated function system, where xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x_n}$$\end{document} is a monotone and bounded sequence, yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${y_n}$$\end{document} is a bounded sequence. The integer order integral of FIF for sequence of data is revealed if the value of the integral is known at the initial endpoint or final endpoint. Besides, Riemann–Liouville fractional calculus of fractal interpolation function had been investigated with numerical examples for analyzing the results.
引用
收藏
页码:3887 / 3906
页数:19
相关论文
共 50 条
  • [31] Optimization of fractal iterated function system (IFS) with probability and fractal image generation
    Kya, B.
    Yang, Y.
    Journal of University of Science and Technology Beijing: Mineral Metallurgy Materials (Eng Ed), 2001, 8 (02): : 152 - 156
  • [33] Optimization of fractal Iterated Function System (IFS) with probability and fractal image generation
    Kya, B
    Yang, Y
    JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING, 2001, 8 (02): : 152 - 156
  • [34] A rational iterated function system for resolution of univariate constrained interpolation
    P. Viswanathan
    A. K. B. Chand
    M. A. Navascués
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2015, 109 : 483 - 509
  • [35] A rational iterated function system for resolution of univariate constrained interpolation
    Viswanathan, P.
    Chand, A. K. B.
    Navascues, M. A.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2015, 109 (02) : 483 - 509
  • [36] Riemann Liouville fractional integral of hidden variable fractal interpolation function
    Ri, Mi-Gyong
    Yun, Chol-Hui
    CHAOS SOLITONS & FRACTALS, 2020, 140 (140)
  • [37] Partial iterated function system based fractal image coding
    Wang, Z
    Yu, UL
    HYBRID IMAGE AND SIGNAL PROCESSING V, 1996, 2751 : 42 - 49
  • [38] FRACTAL DIMENSION AND ITERATED FUNCTION SYSTEM (IFS) FOR SPEECH RECOGNITION
    BOHEZ, ELJ
    SENEVIRATHNE, TR
    VANWINDEN, JA
    ELECTRONICS LETTERS, 1992, 28 (15) : 1382 - 1384
  • [39] Studies on Applying Iterated Function System to Generate Fractal Music
    Qiu, Juan
    Chen, Weiting
    Li, Zexu
    2012 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION TECHNOLOGY AND MANAGEMENT SCIENCE & ENGINEERING (FITMSE 2012), 2012, 14 : 77 - 82
  • [40] Fractal image compression using iterated function system with probabilities
    Mitra, SK
    Murthy, CA
    Kundu, MK
    Bhattacharya, BB
    Acharya, T
    INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: CODING AND COMPUTING, PROCEEDINGS, 2001, : 191 - 195