Riemann Liouville fractional integral of hidden variable fractal interpolation function

被引:14
|
作者
Ri, Mi-Gyong [1 ]
Yun, Chol-Hui [1 ]
机构
[1] Kim Il Sung Univ, Fac Math, Pyongyang, North Korea
关键词
Fractional integral; Hidden variable fractal interpolation function; Function contractivity factor; Fractal interpolation function; Iterated function system;
D O I
10.1016/j.chaos.2020.110126
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study Riemann Liouville fractional integral of hidden variable fractal interpolation function (HVFIF) constructed by functions whose Lipschitz exponents are in (0, 1]. Firstly, we present a construction of HVFIF using functions of which Lipschitz exponents are in (0, 1], so that the Riemann Liouville fractional integral of the HVFIF becomes a fractal interpolation function, and give an example where Lipschitz exponents of functions of IFS are in (0, 1]. Secondly, we prove that the Riemann Liouville fractional integral is also a HVFIF with function vertical scaling factors defined newly. Finally, we give the graphs of 0.8- and 0.2-order fractional integrals of the HVFIFs constructed in the above example. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条