Riemann Liouville fractional integral of hidden variable fractal interpolation function

被引:14
|
作者
Ri, Mi-Gyong [1 ]
Yun, Chol-Hui [1 ]
机构
[1] Kim Il Sung Univ, Fac Math, Pyongyang, North Korea
关键词
Fractional integral; Hidden variable fractal interpolation function; Function contractivity factor; Fractal interpolation function; Iterated function system;
D O I
10.1016/j.chaos.2020.110126
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study Riemann Liouville fractional integral of hidden variable fractal interpolation function (HVFIF) constructed by functions whose Lipschitz exponents are in (0, 1]. Firstly, we present a construction of HVFIF using functions of which Lipschitz exponents are in (0, 1], so that the Riemann Liouville fractional integral of the HVFIF becomes a fractal interpolation function, and give an example where Lipschitz exponents of functions of IFS are in (0, 1]. Secondly, we prove that the Riemann Liouville fractional integral is also a HVFIF with function vertical scaling factors defined newly. Finally, we give the graphs of 0.8- and 0.2-order fractional integrals of the HVFIFs constructed in the above example. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] RIEMANN-LIOUVILLE FRACTIONAL FUNDAMENTAL THEOREM OF CALCULUS AND RIEMANN-LIOUVILLE FRACTIONAL POLYA TYPE INTEGRAL INEQUALITY AND ITS EXTENSION TO CHOQUET INTEGRAL SETTING
    Anastassiou, George A.
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (06) : 1423 - 1433
  • [42] Riemann-Liouville fractional differential equations with Hadamard fractional integral conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Thiramanus, Phollakrit
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2016, 54 (01): : 119 - 134
  • [43] FRACTAL DIMENSION OF COALESCENCE HIDDEN-VARIABLE FRACTAL INTERPOLATION SURFACE
    Prasad, Srijanani Anurag
    Kapoor, G. P.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2011, 19 (02) : 195 - 201
  • [44] Note on Fourier Transform of Hidden Variable Fractal Interpolation
    Agathiyan, A.
    Gowrisankar, A.
    Natarajan, Pankajam
    Bingi, Kishore
    Shaik, Nagoor Basha
    [J]. ENGINEERING JOURNAL-THAILAND, 2023, 27 (12): : 23 - 36
  • [45] Hidden variable vector valued fractal interpolation functions
    Bouboulis, P
    Dalla, L
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2005, 13 (03) : 227 - 232
  • [46] NONLINEAR RECURRENT HIDDEN VARIABLE FRACTAL INTERPOLATION CURVES WITH FUNCTION VERTICAL SCALING FACTORS
    Kim, Jinmyong
    Mun, Hakmyong
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (06)
  • [47] On a sequential fractional differential problem with Riemann-Liouville integral conditions
    Benmehidi, Hammou
    Dahmani, Zoubir
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (04) : 893 - 915
  • [48] On Some Generalized Integral Inequalities for Riemann-Liouville Fractional Integrals
    Sarikaya, Mehmet Zeki
    Filiz, Hatice
    Kiris, Mehmet Eyup
    [J]. FILOMAT, 2015, 29 (06) : 1307 - 1314
  • [49] ON THE SET OF SOLUTIONS OF FRACTIONAL ORDER RIEMANN-LIOUVILLE INTEGRAL INCLUSIONS
    Abbas, Said
    Benchohra, Mouffak
    [J]. DEMONSTRATIO MATHEMATICA, 2013, 46 (02) : 271 - 281
  • [50] BOUNDEDNESS OF RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATOR IN MORREY SPACES
    Senouci, M. A.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2021, 12 (01): : 82 - 91