Hermite analogs of the lowest order Raviart–Thomas mixed method for convection–diffusion equations

被引:0
|
作者
V. Ruas
F. A. Radu
机构
[1] Sorbonne Universités,Department of Mathematics
[2] UPMC Univ Paris 06 & CNRS,undefined
[3] UMR 7190,undefined
[4] IJRDA,undefined
[5] CNPq scholar at Graduate school of Metrology for Quality and Innovation,undefined
[6] PUC-Rio,undefined
[7] University of Bergen,undefined
来源
关键词
Convection–diffusion; Douglas-Roberts; Finite elements; Hermite analog; Lowest order; Raviart–Thomas; 65N30; 76Rxx;
D O I
暂无
中图分类号
学科分类号
摘要
The Raviart–Thomas mixed finite-element method of the lowest order (Raviart and Thomas in mixed finite-element methods for second-order elliptic problems, Lecture Notes in mathematics, Springer, New York, 1977) commonly known as the RT0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RT_0$$\end{document} method, is a well-established and popular numerical tool to solve diffusion-like problems providing flux continuity across inter-element boundaries. Douglas and Roberts extended the method to the case of more general second-order boundary-value problems including the convection–diffusion equations (cf. this journal Douglas in Comput Appl Math 1:91–103; 1982). The main drawback of these methods, however, is the poor representation of the primal variable by piecewise constant functions. The Hermite analog of the RT0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RT_0$$\end{document} method for treating pure diffusion phenomena proposed in Ruas (J Comput Appl Math, 246:234–242; 2013) proved to be a valid alternative to attain higher order approximation of the primal variable while keeping intact the matrix structure and the quality of the discrete flux variable of the original RT0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RT_0$$\end{document} method. Non-trivial extensions of this method are studied here that can be viewed as Hermite analogs of the two Douglas and Roberts’ versions of the RT0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RT_0$$\end{document} method, to solve convection–diffusion equations. A detailed convergence study is carried out for one of the Hermite methods, and numerical results illustrate the performance of both of them, as compared to each other and to the corresponding mixed methods.
引用
收藏
页码:2693 / 2713
页数:20
相关论文
共 50 条
  • [21] A Posteriori Error Estimates of Lowest Order Raviart-Thomas Mixed Finite Element Methods for Bilinear Optimal Control Problems
    Lu, Zuliang
    Chen, Yanping
    Zheng, Weishan
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2012, 2 (02) : 108 - 125
  • [22] Convergence of an adaptive lowest-order Raviart-Thomas element method for general second-order linear elliptic problems
    Dond, Asha K.
    Nataraj, Neela
    Pani, Amiya Kumar
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (02) : 832 - 860
  • [23] Forward simulation and inverse dipole localization with the lowest order Raviart-Thomas elements for electroencephalography
    Pursiainen, S.
    Sorrentino, A.
    Campi, C.
    Piana, M.
    INVERSE PROBLEMS, 2011, 27 (04)
  • [24] Superconvergence analysis of the lowest order rectangular Raviart-Thomas element for semilinear parabolic equation
    Yang, Huaijun
    Shi, Dongyang
    APPLIED MATHEMATICS LETTERS, 2020, 105 (105)
  • [25] The lowest order characteristic mixed finite element scheme for convection-dominated diffusion problem
    Shi, Dongyang
    Liao, Xin
    Wang, Lele
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (07) : 759 - 769
  • [26] FIRST-ORDER SYSTEM LEAST SQUARES ON CURVED BOUNDARIES: LOWEST-ORDER RAVIART-THOMAS ELEMENTS
    Bertrand, Fleurianne
    Muenzenmaier, Steffen
    Starke, Gerhard
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (02) : 880 - 894
  • [27] The Streamline–Diffusion Method for Conforming and Nonconforming Finite Elements of Lowest Order Applied to Convection–Diffusion Problems
    G. Matthies
    L. Tobiska
    Computing, 2001, 66 : 343 - 364
  • [28] Streamline-Diffusion Method of a Lowest Order Nonconforming Rectangular Finite Element for Convection-Diffusion Problem
    Dong-yang SHI
    Hong-xin CUI
    Hong-bo GUAN
    Acta Mathematicae Applicatae Sinica, 2015, 31 (02) : 427 - 434
  • [29] A Third Order Method for Convection-Diffusion Equations with a Delay Term
    Frochte, J.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 281 - 288
  • [30] Streamline-Diffusion Method of a Lowest Order Nonconforming Rectangular Finite Element for Convection-Diffusion Problem
    Shi, Dong-yang
    Cui, Hong-xin
    Guan, Hong-bo
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (02): : 427 - 434