Streamline-Diffusion Method of a Lowest Order Nonconforming Rectangular Finite Element for Convection-Diffusion Problem

被引:1
|
作者
Dong-yang SHI [1 ]
Hong-xin CUI [2 ]
Hong-bo GUAN [1 ]
机构
[1] School of Mathematics and Statistics, Zhengzhou University
[2] Mathematical Science, Henan College of Traditional Chinese Medicine
基金
中国国家自然科学基金;
关键词
convection-diffusion problem; streamline-diffusion method; error estimate; nonconforming rectangular finite element;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
The streamline-diffusion method of the lowest order nonconforming rectangular finite element is proposed for convection-diffusion problem. By making full use of the element’s special property, the same convergence order as the previous literature is obtained. In which, the jump terms on the boundary are added to bilinear form with simple user-chosen parameter δKwhich has nothing to do with perturbation parameter εappeared in the problem under considered, the subdivision mesh size hKand the inverse estimate coefficient μin finite element space.
引用
收藏
页码:427 / 434
页数:8
相关论文
共 50 条