Streamline-Diffusion Method of a Lowest Order Nonconforming Rectangular Finite Element for Convection-Diffusion Problem

被引:3
|
作者
Shi, Dong-yang [1 ]
Cui, Hong-xin [2 ]
Guan, Hong-bo [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Henan Coll Tradit Chinese Med, Math Sci, Zhengzhou 450046, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
convection-diffusion problem; streamline-diffusion method; error estimate; nonconforming rectangular finite element; NAVIER-STOKES EQUATIONS; SUPERCONVERGENCE;
D O I
10.1007/s10255-015-0476-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The streamline-diffusion method of the lowest order nonconforming rectangular finite element is proposed for convection-diffusion problem. By making full use of the element's special property, the same convergence order as the previous literature is obtained. In which, the jump terms on the boundary are added to bilinear form with simple user-chosen parameter delta(K) which has nothing to do with perturbation parameter epsilon appeared in the problem under considered, the subdivision mesh size h(K) and the inverse estimate coefficient mu in finite element space.
引用
收藏
页码:427 / 434
页数:8
相关论文
共 50 条