The streamline-diffusion method for a convection-diffusion problem with a point source

被引:28
|
作者
Roos, HG [1 ]
Zarin, H
机构
[1] Tech Univ Dresden, Inst Numer Math, D-01062 Dresden, Germany
[2] Univ Novi Sad, Fac Sci, Inst Math, YU-21000 Novi Sad, Serbia
关键词
convection-diffusion problems; singular perturbation; streamline-diffusion method; superconvergence; Shishkin-type mesh;
D O I
10.1016/S0377-0427(02)00568-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A singularly perturbed convection-diffusion problem with a point source is considered. The problem is solved using the streamline-diffusion finite element method on a class of Shishkin-type meshes, We prove that the method is almost optimal with second order of convergence in the maximum norm, independently of the perturbation parameter. We also prove the existence of superconvergent points for the first derivative. Numerical experiments support these theoretical results. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:109 / 128
页数:20
相关论文
共 50 条