The streamline-diffusion method for a convection-diffusion problem with a point source

被引:28
|
作者
Roos, HG [1 ]
Zarin, H
机构
[1] Tech Univ Dresden, Inst Numer Math, D-01062 Dresden, Germany
[2] Univ Novi Sad, Fac Sci, Inst Math, YU-21000 Novi Sad, Serbia
关键词
convection-diffusion problems; singular perturbation; streamline-diffusion method; superconvergence; Shishkin-type mesh;
D O I
10.1016/S0377-0427(02)00568-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A singularly perturbed convection-diffusion problem with a point source is considered. The problem is solved using the streamline-diffusion finite element method on a class of Shishkin-type meshes, We prove that the method is almost optimal with second order of convergence in the maximum norm, independently of the perturbation parameter. We also prove the existence of superconvergent points for the first derivative. Numerical experiments support these theoretical results. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:109 / 128
页数:20
相关论文
共 50 条
  • [31] Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems
    V. John
    J.M. Maubach
    L. Tobiska
    [J]. Numerische Mathematik, 1997, 78 : 165 - 188
  • [32] A METHOD FOR NUMERICAL SOLUTION OF A MULTIDIMENSIONAL CONVECTION-DIFFUSION PROBLEM
    Prusov, V. A.
    Doroshenko, A. E.
    Chernysh, R. I.
    [J]. CYBERNETICS AND SYSTEMS ANALYSIS, 2009, 45 (01) : 89 - 95
  • [33] An additive Schwarz method for a stationary convection-diffusion problem
    N. Ghahreman
    A. Kerayechian
    [J]. Korean Journal of Computational and Applied Mathematics, 2001, 8 (3): : 571 - 585
  • [34] An additive Schwarz method for a stationary convection-diffusion problem
    Ghahreman, N.
    Kerayechian, A.
    [J]. Journal of Applied Mathematics and Computing, 2001, 8 (03) : 571 - 585
  • [35] Asymptotic streamline diffusion finite element method for singularly perturbed convection-diffusion differential difference equations
    Senthilkumar, L. S.
    Veerasamy, Subburayan
    Agarwal, Ravi P.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (10) : 11509 - 11522
  • [36] A boundary integral method applied to a convection-diffusion problem
    Penzel, F
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 111 (1-2) : 217 - 226
  • [37] Singularly Perturbed Convection-Diffusion Turning Point Problem with Shifts
    Rai, Pratima
    Sharma, Kapil K.
    [J]. MATHEMATICAL ANALYSIS AND ITS APPLICATIONS, 2015, 143 : 381 - 391
  • [38] An Lp-DPG method for the convection-diffusion problem
    Li, Jiaqi
    Demkowicz, Leszek
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 95 : 172 - 185
  • [39] The inverse source problem for the variable coefficients convection-diffusion equation
    Rap, A.
    Elliott, L.
    Ingham, D. B.
    Lesnic, D.
    Wen, X.
    [J]. INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2007, 15 (05) : 413 - 440
  • [40] Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems
    John, V
    Maubach, JM
    Tobiska, L
    [J]. NUMERISCHE MATHEMATIK, 1997, 78 (02) : 165 - 188