An Lp-DPG method for the convection-diffusion problem

被引:8
|
作者
Li, Jiaqi [1 ]
Demkowicz, Leszek [1 ]
机构
[1] Univ Texas Austin, Oden Inst Computat Engn & Sci, 201 E 24th St, Austin, TX 78712 USA
关键词
Discontinuous Petrov-Galerkin methods; Residual minimization; Banach spaces; Convection-dominated diffusion; SPACES;
D O I
10.1016/j.camwa.2020.08.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Following Muga and van der Zee (Muga and van der Zee, 2015), we generalize the standard Discontinuous Petrov-Galerkin (DPG) method, based on Hilbert spaces, to Banach spaces. Numerical experiments using model 1D convection-dominated diffusion problem are performed and compared with Hilbert setting. It is shown that Banachbased method gives solutions less susceptible to Gibbs phenomenon. h-adaptivity is implemented with the help of the error representation function as error indicator. Published by Elsevier Ltd.
引用
收藏
页码:172 / 185
页数:14
相关论文
共 50 条
  • [1] An Lp-DPG Method with Application to 2D Convection-Diffusion Problems
    Li, Jiaqi
    Demkowicz, Leszek
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2022, 22 (03) : 649 - 662
  • [2] Robust DPG Methods for Transient Convection-Diffusion
    Ellis, Truman
    Chan, Jesse
    Demkowicz, Leszek
    [J]. BUILDING BRIDGES: CONNECTIONS AND CHALLENGES IN MODERN APPROACHES TO NUMERICAL PARTIAL DIFFERENTIAL EQUATIONS, 2016, 114 : 179 - 203
  • [3] Multigrid method for convection-diffusion problem with dominant convection
    Muratova, GV
    [J]. ANALYTICAL AND NUMERICAL METHODS FOR CONVECTION-DOMINATED AND SINGULARLY PERTURBED PROBLEMS, 2000, : 225 - 230
  • [4] A parallel Schwarz method for a convection-diffusion problem
    Garbey, M
    Kuznetsov, YA
    Vassilevski, YV
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (03): : 891 - 916
  • [5] An additive Schwarz method for a stationary convection-diffusion problem
    Ghahreman, N.
    Kerayechian, A.
    [J]. Korean Journal of Computational and Applied Mathematics, 2001, 8 (03): : 571 - 585
  • [6] A Finite Element Splitting Method for a Convection-Diffusion Problem
    Thomee, Vidar
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2020, 20 (04) : 717 - 725
  • [7] A METHOD FOR NUMERICAL SOLUTION OF A MULTIDIMENSIONAL CONVECTION-DIFFUSION PROBLEM
    Prusov, V. A.
    Doroshenko, A. E.
    Chernysh, R. I.
    [J]. CYBERNETICS AND SYSTEMS ANALYSIS, 2009, 45 (01) : 89 - 95
  • [8] An additive Schwarz method for a stationary convection-diffusion problem
    N. Ghahreman
    A. Kerayechian
    [J]. Korean Journal of Computational and Applied Mathematics, 2001, 8 (3): : 571 - 585
  • [9] An additive Schwarz method for a stationary convection-diffusion problem
    Ghahreman, N.
    Kerayechian, A.
    [J]. Journal of Applied Mathematics and Computing, 2001, 8 (03) : 571 - 585
  • [10] A boundary integral method applied to a convection-diffusion problem
    Penzel, F
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 111 (1-2) : 217 - 226