An Lp-DPG method for the convection-diffusion problem

被引:8
|
作者
Li, Jiaqi [1 ]
Demkowicz, Leszek [1 ]
机构
[1] Univ Texas Austin, Oden Inst Computat Engn & Sci, 201 E 24th St, Austin, TX 78712 USA
关键词
Discontinuous Petrov-Galerkin methods; Residual minimization; Banach spaces; Convection-dominated diffusion; SPACES;
D O I
10.1016/j.camwa.2020.08.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Following Muga and van der Zee (Muga and van der Zee, 2015), we generalize the standard Discontinuous Petrov-Galerkin (DPG) method, based on Hilbert spaces, to Banach spaces. Numerical experiments using model 1D convection-dominated diffusion problem are performed and compared with Hilbert setting. It is shown that Banachbased method gives solutions less susceptible to Gibbs phenomenon. h-adaptivity is implemented with the help of the error representation function as error indicator. Published by Elsevier Ltd.
引用
收藏
页码:172 / 185
页数:14
相关论文
共 50 条
  • [31] A meshless method for convection-diffusion problems
    Zerroukat, M
    [J]. ADVANCED COMPUTATIONAL METHODS IN HEAT TRANSFER V, 1998, : 403 - 414
  • [32] Domain decomposition for a parabolic convection-diffusion problem
    Boglaev, Igor
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (06) : 1361 - 1378
  • [33] An Explicit Method for Convection-Diffusion Equations
    Ruas, Vitoriano
    Brasil, Antonio, Jr.
    Trales, Paulo
    [J]. JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2009, 26 (01) : 65 - 91
  • [34] On a Problem of Optimal Control of Convection-Diffusion Processes
    Manapova, Aigul
    Lubyshev, Fedor
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2017, 2018, 10665 : 167 - 174
  • [35] Homogenization of random nonstationary convection-diffusion problem
    Kleptsyna, M
    Piatnitski, A
    [J]. MULTISCALE PROBLEMS IN SCIENCE AND TECHNOLOGY: CHALLENGES TO MATHEMATICAL ANALYSIS AND PERSPECTIVES, 2002, : 251 - 270
  • [36] PARTICLE METHOD FOR A CONVECTION-DIFFUSION EQUATION
    MASGALLIC, S
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 305 (10): : 431 - 434
  • [37] An explicit method for convection-diffusion equations
    Vitoriano Ruas
    Antonio Brasil
    Paulo Trales
    [J]. Japan Journal of Industrial and Applied Mathematics, 2009, 26
  • [38] Numerical Approach to the Inverse Convection-Diffusion Problem
    Yang, Xiao-hua
    She, Dun-xian
    Li, Jian-qiang
    [J]. ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [39] Schwarz alternating algorithms for a convection-diffusion problem
    Boglaev, I
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 165 (03) : 647 - 668
  • [40] The Backward Problem of Stochastic Convection-Diffusion Equation
    Feng, Xiaoli
    Zhao, Lizhi
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (06) : 3535 - 3560