BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design

被引:0
|
作者
William Farnaby
Manfred Koegl
Michael J. Roy
Claire Whitworth
Emelyne Diers
Nicole Trainor
David Zollman
Steffen Steurer
Jale Karolyi-Oezguer
Carina Riedmueller
Teresa Gmaschitz
Johannes Wachter
Christian Dank
Michael Galant
Bernadette Sharps
Klaus Rumpel
Elisabeth Traxler
Thomas Gerstberger
Renate Schnitzer
Oliver Petermann
Peter Greb
Harald Weinstabl
Gerd Bader
Andreas Zoephel
Alexander Weiss-Puxbaum
Katharina Ehrenhöfer-Wölfer
Simon Wöhrle
Guido Boehmelt
Joerg Rinnenthal
Heribert Arnhof
Nicola Wiechens
Meng-Ying Wu
Tom Owen-Hughes
Peter Ettmayer
Mark Pearson
Darryl B. McConnell
Alessio Ciulli
机构
[1] School of Life Sciences,Division of Biological Chemistry and Drug Discovery
[2] University of Dundee,Centre for Gene Regulation and Expression, School of Life Sciences
[3] Boehringer Ingelheim RCV GmbH & Co KG,undefined
[4] University of Dundee,undefined
来源
Nature Chemical Biology | 2019年 / 15卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Targeting subunits of BAF/PBAF chromatin remodeling complexes has been proposed as an approach to exploit cancer vulnerabilities. Here, we develop proteolysis targeting chimera (PROTAC) degraders of the BAF ATPase subunits SMARCA2 and SMARCA4 using a bromodomain ligand and recruitment of the E3 ubiquitin ligase VHL. High-resolution ternary complex crystal structures and biophysical investigation guided rational and efficient optimization toward ACBI1, a potent and cooperative degrader of SMARCA2, SMARCA4 and PBRM1. ACBI1 induced anti-proliferative effects and cell death caused by SMARCA2 depletion in SMARCA4 mutant cancer cells, and in acute myeloid leukemia cells dependent on SMARCA4 ATPase activity. These findings exemplify a successful biophysics- and structure-based PROTAC design approach to degrade high profile drug targets, and pave the way toward new therapeutics for the treatment of tumors sensitive to the loss of BAF complex ATPases.
引用
收藏
页码:672 / 680
页数:8
相关论文
共 50 条
  • [41] SPECIFICITY IN STRUCTURE-BASED DRUG DESIGN
    GSCHWEND, DA
    KUNTZ, ID
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 210 : 106 - MEDI
  • [42] STRUCTURE-BASED DESIGN OF TRANSCRIPTION FACTORS
    POMERANTZ, JL
    SHARP, PA
    PABO, CO
    SCIENCE, 1995, 267 (5194) : 93 - 96
  • [43] Structure-based design: fact or fiction?
    Grootenhuis, PDJ
    Knegtel, RMA
    Heikoop, JC
    van Boeckel, CAA
    TRENDS IN DRUG RESEARCH II, 1998, 29 : 7 - 14
  • [44] The process of structure-based drug design
    Anderson, AC
    CHEMISTRY & BIOLOGY, 2003, 10 (09): : 787 - 797
  • [45] Progression in structure-based drug design
    Fong, F
    GENETIC ENGINEERING NEWS, 2004, 24 (07): : 26 - +
  • [46] SUPERFICIAL – Surface mapping of proteins via structure-based peptide library design
    Andrean Goede
    Ines S Jaeger
    Robert Preissner
    BMC Bioinformatics, 6
  • [47] Realities of structure-based drug design
    Kuntz, ID
    STRUCTURE AND FUNCTION OF 7TM RECEPTORS, 1996, 39 : 392 - 399
  • [48] Discovery of a butyrylcholinesterase-specific probe via a structure-based design strategy
    Yang, Shu-Hou
    Sun, Qi
    Xiong, Hao
    Liu, Shi-Yu
    Moosavi, Behrooz
    Yang, Wen-Chao
    Yang, Guang-Fu
    CHEMICAL COMMUNICATIONS, 2017, 53 (28) : 3952 - 3955
  • [49] Structure-Based Vaccine Antigen Design
    Graham, Barney S.
    Gilman, Morgan S. A.
    McLellan, Jason S.
    ANNUAL REVIEW OF MEDICINE, VOL 70, 2019, 70 : 91 - 104
  • [50] Structure-Based Rational Design of a Phosphotriesterase
    Jackson, Colin J.
    Weir, Kahli
    Herlt, Anthony
    Khurana, Jeevan
    Sutherland, Tara D.
    Horne, Irene
    Easton, Christopher
    Russell, Robyn J.
    Scott, Colin
    Oakeshott, John G.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (15) : 5153 - 5156