BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design

被引:0
|
作者
William Farnaby
Manfred Koegl
Michael J. Roy
Claire Whitworth
Emelyne Diers
Nicole Trainor
David Zollman
Steffen Steurer
Jale Karolyi-Oezguer
Carina Riedmueller
Teresa Gmaschitz
Johannes Wachter
Christian Dank
Michael Galant
Bernadette Sharps
Klaus Rumpel
Elisabeth Traxler
Thomas Gerstberger
Renate Schnitzer
Oliver Petermann
Peter Greb
Harald Weinstabl
Gerd Bader
Andreas Zoephel
Alexander Weiss-Puxbaum
Katharina Ehrenhöfer-Wölfer
Simon Wöhrle
Guido Boehmelt
Joerg Rinnenthal
Heribert Arnhof
Nicola Wiechens
Meng-Ying Wu
Tom Owen-Hughes
Peter Ettmayer
Mark Pearson
Darryl B. McConnell
Alessio Ciulli
机构
[1] School of Life Sciences,Division of Biological Chemistry and Drug Discovery
[2] University of Dundee,Centre for Gene Regulation and Expression, School of Life Sciences
[3] Boehringer Ingelheim RCV GmbH & Co KG,undefined
[4] University of Dundee,undefined
来源
Nature Chemical Biology | 2019年 / 15卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Targeting subunits of BAF/PBAF chromatin remodeling complexes has been proposed as an approach to exploit cancer vulnerabilities. Here, we develop proteolysis targeting chimera (PROTAC) degraders of the BAF ATPase subunits SMARCA2 and SMARCA4 using a bromodomain ligand and recruitment of the E3 ubiquitin ligase VHL. High-resolution ternary complex crystal structures and biophysical investigation guided rational and efficient optimization toward ACBI1, a potent and cooperative degrader of SMARCA2, SMARCA4 and PBRM1. ACBI1 induced anti-proliferative effects and cell death caused by SMARCA2 depletion in SMARCA4 mutant cancer cells, and in acute myeloid leukemia cells dependent on SMARCA4 ATPase activity. These findings exemplify a successful biophysics- and structure-based PROTAC design approach to degrade high profile drug targets, and pave the way toward new therapeutics for the treatment of tumors sensitive to the loss of BAF complex ATPases.
引用
收藏
页码:672 / 680
页数:8
相关论文
共 50 条
  • [21] Structure-based drug design
    Kubinyi, H
    CHIMICA OGGI-CHEMISTRY TODAY, 1998, 16 (10) : 17 - 22
  • [22] STRUCTURE-BASED DRUG DESIGN
    MONTGOMERY, JA
    NIWAS, S
    CHEMTECH, 1993, 23 (11) : 30 - 37
  • [23] Structure-based drug design
    Murcko, MA
    Caron, PR
    Charifson, PS
    ANNUAL REPORTS IN MEDICINAL CHEMISTRY, VOL 34, 1999, 34 : 297 - 306
  • [24] STRUCTURE-BASED DRUG DESIGN
    COLMAN, PM
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 1994, 4 (06) : 868 - 874
  • [25] Structure-based drug design
    Blundell, TL
    NATURE, 1996, 384 (6604) : 23 - 26
  • [26] Structure-based drug design
    Amzel, LM
    CURRENT OPINION IN BIOTECHNOLOGY, 1998, 9 (04) : 366 - 369
  • [27] Contributions of protein structure-based drug design to cancer chemotherapy
    Jackson, RC
    SEMINARS IN ONCOLOGY, 1997, 24 (02) : 164 - 172
  • [28] Structure-based design to improve the selectivity of kinase inhibitors in cancer therapy
    Assadieskandar, Amin
    Yu, Caiyun
    Zhang, Chao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [29] Structure-based design for binding peptides in anti-cancer therapy
    Wang, Sheng-Hung
    Yu, John
    BIOMATERIALS, 2018, 156 : 1 - 15
  • [30] The structure of siglec-7 in complex with sialosides: leads for rational structure-based inhibitor design
    Attrill, Helen
    Takazawa, Hirokazu
    Witt, Simone
    Kelm, Soerge
    Isecke, Rainer
    Brossmer, Reinhard
    Ando, Takayuki
    Ishida, Hideharu
    Kiso, Makoto
    Crocker, Paul R.
    van Aalten, Daan M. F.
    BIOCHEMICAL JOURNAL, 2006, 397 : 271 - 278