BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design

被引:0
|
作者
William Farnaby
Manfred Koegl
Michael J. Roy
Claire Whitworth
Emelyne Diers
Nicole Trainor
David Zollman
Steffen Steurer
Jale Karolyi-Oezguer
Carina Riedmueller
Teresa Gmaschitz
Johannes Wachter
Christian Dank
Michael Galant
Bernadette Sharps
Klaus Rumpel
Elisabeth Traxler
Thomas Gerstberger
Renate Schnitzer
Oliver Petermann
Peter Greb
Harald Weinstabl
Gerd Bader
Andreas Zoephel
Alexander Weiss-Puxbaum
Katharina Ehrenhöfer-Wölfer
Simon Wöhrle
Guido Boehmelt
Joerg Rinnenthal
Heribert Arnhof
Nicola Wiechens
Meng-Ying Wu
Tom Owen-Hughes
Peter Ettmayer
Mark Pearson
Darryl B. McConnell
Alessio Ciulli
机构
[1] School of Life Sciences,Division of Biological Chemistry and Drug Discovery
[2] University of Dundee,Centre for Gene Regulation and Expression, School of Life Sciences
[3] Boehringer Ingelheim RCV GmbH & Co KG,undefined
[4] University of Dundee,undefined
来源
Nature Chemical Biology | 2019年 / 15卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Targeting subunits of BAF/PBAF chromatin remodeling complexes has been proposed as an approach to exploit cancer vulnerabilities. Here, we develop proteolysis targeting chimera (PROTAC) degraders of the BAF ATPase subunits SMARCA2 and SMARCA4 using a bromodomain ligand and recruitment of the E3 ubiquitin ligase VHL. High-resolution ternary complex crystal structures and biophysical investigation guided rational and efficient optimization toward ACBI1, a potent and cooperative degrader of SMARCA2, SMARCA4 and PBRM1. ACBI1 induced anti-proliferative effects and cell death caused by SMARCA2 depletion in SMARCA4 mutant cancer cells, and in acute myeloid leukemia cells dependent on SMARCA4 ATPase activity. These findings exemplify a successful biophysics- and structure-based PROTAC design approach to degrade high profile drug targets, and pave the way toward new therapeutics for the treatment of tumors sensitive to the loss of BAF complex ATPases.
引用
收藏
页码:672 / 680
页数:8
相关论文
共 50 条
  • [31] NMR in structure-based drug design
    Carneiro, Marta G.
    Eiso, A. B.
    Theisgen, Stephan
    Siegal, Gregg
    STRUCTURE-BASED DRUG DESIGN: INSIGHTS FROM ACADEMIA AND INDUSTRY, 2017, 61 (05): : 485 - 493
  • [32] Structure-based design of opioid ligands
    Ferguson, David M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [33] SUPERFICIAL - Surface mapping of proteins via structure-based peptide library design
    Goede, A
    Jaeger, IS
    Preissner, R
    BMC BIOINFORMATICS, 2005, 6 (1)
  • [34] Guided structure-based ligand identification and design via artificial intelligence modeling
    Di Filippo, Juan, I
    Cavasotto, Claudio N.
    EXPERT OPINION ON DRUG DISCOVERY, 2022, 17 (01) : 71 - 78
  • [35] Structure-Based Design of Ricin Inhibitors
    Jasheway, Karl
    Pruet, Jeffrey
    Anslyn, Eric V.
    Robertus, Jon D.
    TOXINS, 2011, 3 (10): : 1233 - 1248
  • [36] Advances in structure-based vaccine design
    Kulp, Daniel W.
    Schief, William R.
    CURRENT OPINION IN VIROLOGY, 2013, 3 (03) : 322 - 331
  • [37] Structure-based design of IAP antagonists
    Fairbrother, Wayne J.
    MOLECULAR CANCER THERAPEUTICS, 2007, 6 (12) : 3623S - 3623S
  • [38] NMR STRUCTURE-BASED DRUG DESIGN
    FESIK, SW
    JOURNAL OF BIOMOLECULAR NMR, 1993, 3 (03) : 261 - 269
  • [39] Structure-based design of model proteins
    Banavar, JR
    Cieplak, M
    Maritan, A
    Nadig, G
    Seno, F
    Vishveshwara, S
    PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1998, 31 (01): : 10 - 20
  • [40] Structure-based design of thrombin inhibitors
    Pfau, R
    CURRENT OPINION IN DRUG DISCOVERY & DEVELOPMENT, 2003, 6 (04) : 437 - 450