Critical Sets of 2-Balanced Latin Rectangles

被引:0
|
作者
Nicholas Cavenagh
Vaipuna Raass
机构
[1] The University of Waikato,Department of Mathematics
来源
Annals of Combinatorics | 2016年 / 20卷
关键词
full design; critical set; (0, 1)-matrix; balanced Latin rectangle; Latin square; 05B15;
D O I
暂无
中图分类号
学科分类号
摘要
An (m, n, 2)-balanced Latin rectangle is an m×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m \times n}$$\end{document} array on symbols 0 and 1 such that each symbol occurs n times in each row and m times in each column, with each cell containing either two 0’s, two 1’s or both 0 and 1. We completely determine the structure of all critical sets of the full (m, n, 2)-balanced Latin rectangle (which contains 0 and 1 in each cell). If m, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \geq 2}$$\end{document}, the minimum size for such a structure is shown to be (m-1)(n-1)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(m-1)(n-1)+1}$$\end{document}. Such critical sets in turn determine defining sets for (0, 1)-matrices.
引用
收藏
页码:525 / 538
页数:13
相关论文
共 50 条
  • [41] ASYMPTOTIC ENUMERATION OF LATIN RECTANGLES
    GODSIL, CD
    MCKAY, BD
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 48 (01) : 19 - 44
  • [42] LATIN SQUARES - CRITICAL SETS AND THEIR LOWER BOUNDS
    DONOVAN, D
    COOPER, J
    NOTT, DJ
    SEBERRY, J
    ARS COMBINATORIA, 1995, 39 : 33 - 48
  • [43] The minimum size of critical sets in latin squares
    Fu, CM
    Fu, HL
    Rodger, CA
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 62 (02) : 333 - 337
  • [44] Completing Latin squares: Critical sets II
    Horak, Peter
    Dejter, Italo J.
    JOURNAL OF COMBINATORIAL DESIGNS, 2007, 15 (01) : 77 - 83
  • [45] Critical sets in latin squares and associated structures
    Bean, RW
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 66 (01) : 175 - 176
  • [46] Completing Latin squares: Critical sets II
    University of Washington, Tacoma, Tacoma, WA 98402-3100, United States
    不详
    J Comb Des, 2007, 1 (77-83):
  • [47] JOINTLY EXTENDABLE LATIN RECTANGLES
    HORAK, P
    KREHER, DL
    ROSA, A
    UTILITAS MATHEMATICA, 1989, 36 : 193 - 195
  • [48] Permanents, matchings and Latin rectangles
    Wanless, IM
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 59 (01) : 169 - 170
  • [49] A new class of critical sets in Latin squares
    Cavenagh, NJ
    Donovan, D
    Gower, RAH
    UTILITAS MATHEMATICA, 2005, 67 : 285 - 300
  • [50] Enumerating partial Latin rectangles
    Falcon, Raul M.
    Stones, Rebecca J.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (02): : 1 - 41