Critical Sets of 2-Balanced Latin Rectangles

被引:0
|
作者
Nicholas Cavenagh
Vaipuna Raass
机构
[1] The University of Waikato,Department of Mathematics
来源
Annals of Combinatorics | 2016年 / 20卷
关键词
full design; critical set; (0, 1)-matrix; balanced Latin rectangle; Latin square; 05B15;
D O I
暂无
中图分类号
学科分类号
摘要
An (m, n, 2)-balanced Latin rectangle is an m×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m \times n}$$\end{document} array on symbols 0 and 1 such that each symbol occurs n times in each row and m times in each column, with each cell containing either two 0’s, two 1’s or both 0 and 1. We completely determine the structure of all critical sets of the full (m, n, 2)-balanced Latin rectangle (which contains 0 and 1 in each cell). If m, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \geq 2}$$\end{document}, the minimum size for such a structure is shown to be (m-1)(n-1)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(m-1)(n-1)+1}$$\end{document}. Such critical sets in turn determine defining sets for (0, 1)-matrices.
引用
收藏
页码:525 / 538
页数:13
相关论文
共 50 条
  • [31] On the completion of Latin rectangles to symmetric Latin squares
    Bryant, D
    Rodger, CA
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 76 : 109 - 124
  • [32] Divisors of the number of Latin rectangles
    Stones, Douglas S.
    Wanless, Ian M.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (02) : 204 - 215
  • [33] THE ASYMPTOTIC NUMBER OF LATIN RECTANGLES
    ERDOS, P
    KAPLANSKY, I
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (01) : 61 - 61
  • [34] ASYMPTOTIC ENUMERATION OF LATIN RECTANGLES
    GODSIL, CD
    MCKAY, BD
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 10 (01) : 91 - 92
  • [35] On Computing the Number of Latin Rectangles
    Rebecca J. Stones
    Sheng Lin
    Xiaoguang Liu
    Gang Wang
    Graphs and Combinatorics, 2016, 32 : 1187 - 1202
  • [36] THE ASYMPTOTIC NUMBER OF LATIN RECTANGLES
    ERDOS, P
    KAPLANSKY, I
    AMERICAN JOURNAL OF MATHEMATICS, 1946, 68 (02) : 231 - 236
  • [37] ENUMERATION OF TRUNCATED LATIN RECTANGLES
    LIGHT, FW
    FIBONACCI QUARTERLY, 1979, 17 (01): : 34 - 36
  • [38] Maximal orthogonal Latin rectangles
    Horak, P
    Rosa, A
    Siran, J
    ARS COMBINATORIA, 1997, 47 : 129 - 145
  • [39] On Computing the Number of Latin Rectangles
    Stones, Rebecca J.
    Lin, Sheng
    Liu, Xiaoguang
    Wang, Gang
    GRAPHS AND COMBINATORICS, 2016, 32 (03) : 1187 - 1202
  • [40] Latin rectangles and quadrature formulas
    Dobrovol'skii, N. M.
    Dobrovol'skii, N. N.
    Rebrova, I. Yu.
    Balaba, I. N.
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 80 : 82 - 88